
By Informa Markets

Best Practices for Designing Real-Time Embedded Systems

Sponsored by

DAY 5 : The Best Practices Lightning Round

Sponsored By

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question
asking for assistance.

• Participate in ‘Attendee Chat’ by maximizing the chat widget in your
dock.

2

Sponsored By

Course Sessions

3

• System Level Design Philosophy
• Designing a Hardware-less System
• It’s All About the Data
• Testing Your Way to Design Success
• The Best Practices Lightning Round

Sponsored By

4

Best Practices for SDLC1

The Software Development Life Cycle (SDLC) defines the
processes, standards and best practices used to develop and
maintain a software system.

Sponsored By

Best Practices for SDLC

5

Periodically audit your SDLC and adjust
based on your current needs. (Tune it!)

Use a tool like JAMA to record your
requirements and use cases in a single
place.

Don’t go overboard! Build out only as much
SDLC process as you need to be successful.

Automate and templatize as much as you
possibly can. (It saves time in the long run).

Ensure that your SDLC is traceable from
requirements through testing.

Setup and leverage continuous integration and
continuous deployment processes.

Define your metrics and measure them
throughout the development cycle.

1

2

Use software features to plan sprints
(Feature-based development).

Select the development model that best
meets your needs and customers.

3

4

6

7

8

9

10Use a project management tool to plan,
track and monitor progress. 5

Sponsored By

6

Best Practices for Software Design -
Architecture2

A properly architected software system will not only provide
flexibility and scalability, it will also help minimize the effort
and resources needed to implement and maintain the
software.

Sponsored By

Best Practices for Software Design - Architecture

Architecture is the decomposition of a system into its core components, the
arrangement of those components and how they interact with each other.

7

A good architecture:
• Is understandable
• “Easy” to implement
• Maintainable
• Deployable

An architecture should:
• Minimize the systems lifetime costs
• Improve programmer productivity

• Scalable
• Flexible
• Abstracted
• Hardware Independent

Sponsored By

Best Practices for Software Design - Architecture

Several diagrams are required in order to fully understand a software
system architecture.

8Drivers

Hardware Abstraction Layer (HAL)

Board Support
Package (BSP) RTOS

API’s

File System

API Shim OSAL

Application

Sponsored By

Best Practices for Software Design - Security

Platform Security Architecture (PSA).
• An open device security framework with independent testing.

9

Sponsored By

Best Practices for Software Design - Security

Perform a threat-based security analysis to define your security objectives and requirements.

10

Data assets that exist in nearly all IoT devices include:
• The firmware
• Unique ID
• Passwords (flash, users, etc)
• Encryption keys (to control device, secure communication, etc)

Sponsored By

How important is security to your product development efforts?
• Must Have
• Nice to have
• Not needed
• Other

11

Sponsored By

Best Practices for Software Design

12

Manage your component dependencies
carefully to minimize coupling.

Separate your architecture into design and
implementation architectures.

Identify data generators, sinks and transfers to
architect the system.

Use class diagrams to define Hardware
Abstraction Layers (HALs) and API’s.

Identify the data assets that you need to
protect … it won’t necessarily be everything!

Don’t forget to consider security implications in
your architecture.

Remember, security through isolation!
Hardware based isolation to layer the software
to protect it.

1

2

Follow SOLID principles when you architect
your software.

Use a UML tool like Enterprise Architect or
Visual Paradigm.

3

4

6

7

8

9

10Design the software to be hardware and
language agnostic. 5

Sponsored By

13

Best Practices for Frameworks and Open-
Source Software (OSS) 3

Software systems today are too complex to completely
implement from scratch. Leveraging frameworks, open source
software and writing reusable software is required to be
successful.

Sponsored By

Best Practices for Frameworks and OSS

Use a KT Matrix to evaluate and select components in an unbiased manner that best fit your needs.

14

Sponsored By

Best Practices for Frameworks and OSS

Think quality. Through-out development, integration and deployment constantly analyze and measure your

software quality.

Define the metrics that mean quality software to your organization such as:

• Cyclomatic Complexity rating
• Software builds with zero errors and warnings
• Set and measure desired code coverage during testing
• Statically analyze code for coding standard violations

Create an automated reporting system that can be ran when code is checked in.

15

Sponsored By

Which of the following is the most important thing to check about OSS?
• Cyclomatic Complexity rating
• Software builds with zero errors and warnings
• Set and measure desired code coverage during testing
• Statically analyze code for coding standard violations

16

Sponsored By

Best Practices for Frameworks and OSS

17

Write your software to be abstracted and
hardware independent.

Select software that has an active
community, not a one-off example.

Leverage integrated software when possible to
minimize issues.

Build an acceptable testing process to verify
the software's robustness.

Perform an unbiased analysis to determine if
the software is right for you.

Carefully read any existing documentation and
example code.

Be extremely careful when upgrading to a new
software version.

1

2

Perform a software audit and quality
analysis.

Have open-source software licenses
reviewed by an attorney.

3

4

6

7

8

9

10Use an abstraction layer to remove
dependencies.5

Sponsored By

18

Best Practices for Testing4

Testing is the most neglected phase by many companies.
Testing has evolved over the past several years to not just be a
core requirement, but the foundation on which quality
systems are built.

Sponsored By

Best Practices for Testing

19

Create a continuous integration and continuous deployment (CI/CD) pipeline.

Sponsored By

Best Practices for Testing

Test Driven Development (TDD) is a technique that advocates writing a failing test first before writing

code that makes the test pass.

TDD provides several benefits and best practices such as:

• Unit testing a function
• Generating tests that catch a failure mode
• Can be migrated to an automated build server
• Provides regression testing
• Decreases the time spent debugging

20

Sponsored By

How much experience do you have with CI/CD?
• Expert user
• Intermediate user
• Beginner
• What’s CI/CD?

21

Sponsored By

Best Practices for Testing

22

Testing today needs to be automated.
Software is too complex for manual
testing.
Take the time to design a build pipeline
that fits your organization.

Don’t forget to create tests for component
integration.

Create an automated pipline for CI/CD.

Take the tie to create blackbox tests for
frameworks and open source software that
you are using.

Test your software on target, not just on a
build server.

Leverage tools such as Jenkins and CPU
models to automate your testing process.

1

2

Setup a build server to automatically
compile and test your software.

Develop your software using techniques
like test driven development (TDD).

3

4

6

7

8

9

10Select a commonly used test harness like
CppUTest.5

Sponsored By

Thank you for attending

23

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses
• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under
- Blog > CEC – Best Practices for Real-Time Embedded Systems

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Thank You

Sponsored by

	Best Practices for Designing Real-Time Embedded Systems
	Webinar Logistics
	Course Sessions
	Slide Number 4
	Best Practices for SDLC
	Slide Number 6
	Best Practices for Software Design - Architecture
	Best Practices for Software Design - Architecture
	Best Practices for Software Design - Security
	Best Practices for Software Design - Security
	Slide Number 11
	Best Practices for Software Design
	Slide Number 13
	Best Practices for Frameworks and OSS
	Best Practices for Frameworks and OSS
	Slide Number 16
	Best Practices for Frameworks and OSS
	Slide Number 18
	Best Practices for Testing
	Best Practices for Testing
	Slide Number 21
	Best Practices for Testing
	Thank you for attending
	Thank You

