

Machine Learning Application Design using STM32 MCU's

DAY 5 : Running an Inference on Target

Sponsored by

11111111

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.
- Submit questions for the lecturer using the Q&A widget. They will follow-up after the lecture portion concludes.

Course Sessions

- Introduction to Machine Learning on MCU's
- Capturing, Cleaning and Digital Signal Processing Data
- Training a Neural Network Part 1
- Training a Neural Network Part 2
- Running an Inference on Target

Two Models to Deploy

1) Gesture Detection

2) Hello World – Sine Wave

STM32Cube.Al Overview

- ✓ Quickly assess model footprint requirements
- ✓ Select and configure MCU in STM32CubeMX
- ✓ Review model layers in STM32Cube.AI
- ✓ Generate C-code for pre-trained model
- Support quantized models to reduce RAM, flash and latency with minimal loss of accuracy
- ✓ Use light run-time libraries
- Optimize for performance
- ✓ Optimize memory allocation
- ✓ Fine control of weight mapping
- ✓ Split between internal and external memory
- ✓ Update model without full FW update

And quickly iterate thanks to on-target validation

Gesture Detection Deployment

1111111

Exporting an STM32 Binary

Or get a ready-to-go binary for your development board that includes your impulse. ST IoT Discovery Kit Eta Compute ECM3532 Al Sensor Arduino Nano 33 BLE Sense SiLabs Thunderboard Sense 2 Himax WE-I Plus Nordic nRF52840 DK + IKS02A1

Exporting an STM32 AI pack

24

~

🎁 Deployment

=	EDGE IMPULSE DEPLOYMENT (BENINGO-PROJECT-1)										
_			Deploy your impulse								
Ļ	Dashboard										
	Devices		You can deploy your impulse to any device. This makes the model run without an internet connection, minimizes latency, and runs with minimal power consumption. Read more.								
	Data acquisition		Consta l'Ilena								
v	Impulse design		Create library Turn your impulse into optimized source code that you can run on any device.								
	Create impulse										
	Spectral features		G	ARDUINO	STM 52						
	 NN Classifier 		C++ library	Arduino library	Cube.MX CMSIS-PACK						
	 Anomaly detection 										
*	Retrain model										
\sim	Live classification		WA	NVIDIA.							
	Model testing		WebAssembly	TensorRT library							
r	Versioning		Build firmware								

Or get a ready-to-go binary for your development board that includes your impulse.

What method do you prefer for testing?

- Using the prebuilt binary
- Using the pack
- C++ library
- other

Apply Optimization(s)

Available optimizations for NN Classifier

Quantized (int8) 📩	RAM USAGE LATENCY		CONFUSION MATRIX				
	1.5K	1 ms	87.8	7.0	0	0	5.2
Currently selected			0	99.2	0	0	0.8
	ROM USAGE	ACCURACY	0	0	100	0	0
This optimization is	15.4K	95.68%	-	-	-	-	-
performance.	RAM USAGE	LATENCY	CONFUSIO	N MATRIX			(?)
	1 5K	1 ms	87.6	6.6	0	0	5.8
Click to select			0	100	0	0	0
	ROM USAGE	ACCURACY	0	0	100	0	0
	17.7K	95.88%	-	-	-	-	-

Estimate for Cortex-M4F 80MHz (ST IoT Discovery Kit)

Install Pack into STM32Mx Project

Help -> Manage Embedded Software Packages

Install Pack into STM32Mx Project

Software Pacl	ks Component Se	elector	
Packs			
🗮 🗞 🕕 >			
Pack / Bundle / Component	Status	Version	Selection 🗸
$\scriptstyle{ imes}$ EdgeImpulse.Beningo-project-1	\odot	1.0.3	
✓ Beningo-project-1 MachineLearni	ing 🥝	1.0.3	
Core	\odot		
> RoweBots.I-CUBE-UNISONRTOS		5.5.0-4 ڬ 😉	Install
∨ STMicroelectronics.X–CUBE–AI		6.0.0 ~	
> Artificial Intelligence X-CUBE-AI		6.0.0	
> Device Application		6.0.0	

Install Pack into STM32Mx Project

Pinout & Configuration		Clock Configuration	Proj
		✓ Software Packs ✓ F	Pinout
Q ~	0	EdgeImpulse.Beningo-project-1.1.0.3 Mode ar	nd Configuration
Categories A->Z		Mode	
System Core	>	Beningo-project-1 MachineLearning	
Analog	>		
Timers	>		
Connectivity	>		
Multimedia	>		
Security	>		
Computing	\sim		
\$	_	Configuration	
CRC A DFSDM1		🔥 Warning: This peripheral has no parameter	s to be configured
Middleware	>		
Software Packs	\sim		
EdgeImpulse.Beningo-project-1.1.0.3	1		

Install Pack into STM32Mx Project

Home STM32L47	'5VGTx – B–L475E–IC	TO1A1 STM32_ML_Gesture.ioc - Pr	oject Manager >		GENERATE CODE
Pinout & Co	nfiguration	Clock Configuration	Proje	ct Manager	Tools
Project	Project Settings Project Name STM32_ML_Gesture Project Location /Users/beningo			Modify, Build	d, Deploy
Code Generator	Advanced Toolchain Folder Locati /Users/beningo/STM32 Toolchain / IDE STM32CubeIDE	✓ □ Do not generate the main on _ML_Gesture/ ✓ Generat	i() 	TILIDS.//DILID	JZESCSIN

Running the Model

In a terminal, run the command: edge-impulse-run-impulse

```
Starting inferencing in 2 seconds...
Sampling... Storing in file name: /fs/device-classification.116
Predictions (DSP: 14 ms., Classification: 1 ms., Anomaly: 1 ms.):
    Circle: 0.99609
    Updown: 0.00000
    Wave: 0.00000
    anomaly score: -0.026
Finished inferencing, raw data is stored in '/fs/device-classification.116'. Use AT+UPLOADFILE to send back to Edge Impulse.
```

```
Starting inferencing in 2 seconds...
Sampling... Storing in file name: /fs/device-classification.121
Predictions (DSP: 15 ms., Classification: 0 ms., Anomaly: 2 ms.):
    Circle: 0.00000
    Updown: 0.00000
    Wave: 0.99609
    anomaly score: -0.132
```

Finished inferencing, raw data is stored in '/fs/device-classification.121'. Use AT+UPLOADFILE to send back to Edge Impulse.

Running the Model

Starting inferencing in 2 seconds... Sampling... Storing in file name: /fs/device-classification.118 Predictions (DSP: 15 ms., Classification: 0 ms., Anomaly: 2 ms.): Circle: 0.01172 Updown: 0.98828 Wave: 0.00000 anomaly score: -0.141 Finished inferencing, raw data is stored in '/fs/device-classification.118'. Use AT+UPLOADFILE to send back to Edge Impulse. Starting inferencing in 2 seconds... Sampling... Storing in file name: /fs/device-classification.119 Predictions (DSP: 14 ms., Classification: 1 ms., Anomaly: 1 ms.): Circle: 0.21094 Updown: 0.78906 Wave: 0.00000 anomaly score: -0.164

Finished inferencing, raw data is stored in '/fs/device-classification.119'. Use AT+UPLOADFILE to send back to Edge Impulse.

What methods can be used to improve classifaction ?

- Running average on the output
- Monitor the anomaly value
- Set a minimum classification percentage
- All the above
- Other

CEC Continuing Education Center

Hello World Deployment

11111111

Create a New STM32CubeMx Project

Start My project from MCU

ACCESS TO MCU SELECTOR

Start My project from ST Board

ACCESS TO BOARD SELECTOR

Start My project from Example

ACCESS TO EXAMPLE SELECTOR

2	Board Filters —	Ð	নিব	J	
	Commercial Part Number				~
	Vendor	B-G47 B-L07 B-L46	2Z-LRW	W1 AN1 1	
	Туре	B-L47 B-L47	5E-IOT0	1A1 1A2	
		B-L4S	5I-IOT02	1A	

L market.

Board Project Options: B-L475E-IOT01A1

? 3

Initialize all peripherals with their default Mode?

Add the AI Pack to the Project

Software Packs Component Selector				
Status	Version	Selection		
	1.0.3			
	5.5.0-4 ڬ 😉	Install		
\odot	6.0.0 ~			
\odot	6.0.0			
\odot				
\odot	6.0.0			
\odot		Applicati 🗸		
	Sof Status	Software Packs Co Status Version 1.0.3 5.5.0-4 € € Image: Software Packs Co Image: Software Packs Co Image: Software Packs Co Image: Software Packs Co </td		

Setup and Analyze the Keras Model

م	0	STMicroelectronics.X-CUBE-AI.6.0.0 Mode and Configuration							
Categories A->Z			Mode						
System Core	>	✓ Artificial Intel	✓ Artificial Intelligence X-CUBE-AI						
Analog	>	✓ Device Applic	ation						
Timers	>		Configuration						
Connectivity	>	Reset Configuration	on 🗸	Add network	Delete network				
Multimedia	>	Model inputs]				
Security	>	Keras	√ Saved mod	el	~				
Computing	>				_				
Middleware	>	Model:	/Users/beningo/modelmodel.h5	Brov	vse				
Software Packs	~			DIOV					
CTM and a straight March		Compression:	lone \checkmark		***				
▼ STMICroelectronics.X-CU	IBE-AI.6.0.0	Validation inputs	: Random numbers \checkmark		200				
		Validation outpu	ts: None 🗸	SI	now graph				
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/ Analyze				
		Complexity: 33 M Flash occupation:	/ACC : 100.00 B (1024.00 KiB present)	Valid	ate on desk				
		Achieved compres Analysis status: d	lone present) Ione	Valic	ate on target				

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

### Keras Model Analysis

### Analyzing Network

work	space dir	: /private/	var/tolde	rs/13/4x_x6	29X0ZX47	DIM2T05ZV	ZW0000	gn/T	/mxA1_wor	кѕрасетл	3466811978139755	935043162158
outp	out dir	: /Users/be	ningo/.st	m32cubemx								
mode	lname	: modelmode	1									
mode	el hash	: de2ced29f	4c4bafd7d	1dcf4c08240	154							
inpu	it	: input_0 [	1 items,	4 B, ai_floa	at, FLOA	T32, (1,	1, 1)]					
inpu	ıts (total)	: 4 B										
outp	out	: dense_1 [	1 items,	4 B, ai_floa	at, FLOA	T32, (1,	1, 1)]					
outp	outs (total)	: 4 B										
para	ams #	: 25 items	(100 B)									
maco		: 33										
weig	hts (ro)	: 100 B (10	0 B)									
acti	(totol)	: 32 B (32	B) _ 22 /	4 . 4								
ram	(lolal)	: 40 D (40	D) = 32 +	4 + 4								
Mode	al name - model	lmodel ['innu	+ 10 [יא	ence 1'l								
id	layer (type)		shape	param/size	macc	connecte	ed to	T	c_size	c_macc	c_type	
0	input 0 (Inpu	 _+ )	(c·1)									
U	dense (Dense)	)	(c:8)	16/64	16	input 0		ł			dense()[0]	
	dense nl (Nor	, nlinearitv)	(c:8)	10, 01	8	dense		ł			nl()[1]	
1	dense_1 (Dens	se)	(c:1)	9/36	9	dense_nl	-	Ι			dense()/o[2]	
mode	el/c-model: mag		ahts=100/	100 activat	tions=	-/32 io=	-/8					
mout			girc5-100/	100 000170	cionio-	/ 52 10-	, 0					
Comp	lexity report	per layer -	macc=33 w	eights=100 a	act=32 n	am_io=8						
id	name c_	_macc		c_rom			c_id					
0	dense		11 /19 5%			61 00	[0]					
0	dense nl		2/ 2%			04.0%	[1]					
1	dense 1		27.3%		I	36.0%	[2]					
-			2/150		I	50100	141					

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

### Setup and Analyze the TensorFlow Lite Model

<u>Main</u> sinemodel +		
Model inputs		
sinemodel		
TFLite STM32Cube.Al runtime		$\sim$
	-	
Model: (Users/beningo/model.tflite	Browse	
	Browse	
Compression: None V		~
Validation inputs: Random numbers 🗸		2003 
Validation outputs: None 🗸	Show graph	
	Analyze	
Complexity: – Flash occupation: – (1024.00 KiB present)	Validate on desl	<
RAM: – (96.00 KiB present) Achieved compression: – Analysis status: –	Validate on targ	jet

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

### **TFLite Model Analysis**

model_name model_bash	: model • 1c2d5a21b889b8e12b4284a72cfb10fb
input	: serving_default_dense_2_input0_int8 [1 items, 1 B, ai_i8, scale=0.024573976173996925, zero_point=-128
inputs (total)	:1B
output	: dense_2 [1 items, 1 B ai_i8, scale=0.008472034707665443, zero_point=4, (1, 1, 1)]
outputs (total)	: 1 B
params #	: 321 items (420 B)
macc	: 321
weights (ro)	: 420 B (420 B)
activations (rw)	: 32 B (32 B)
ram (total)	: 34 B (34 B) = 32 + 1 + 1

Model name - model ['serving_default_dense_2_input0_int8'] ['dense_2']

id	layer (type)	shape	param/size	macc	connected to	Ι		
0	serving_default_dense_2_input0_int8 (Input) dense_0 (Dense) nl_0_nl (Nonlinearity)	(c:1) (c:16) (c:16)	32/80	32 16	serving_default_dense_2_input0_int8 dense_0	   		
1	dense_1 (Dense) nl_1_nl (Nonlinearity)	(c:16) (c:16)	272/320	272 16	nl_0_nl dense_1	 		
2	dense_2 (Dense)	(c:1)	17/20	17	nl_1_nl	I		
mod	model/c-model: macc=353/321 -32(-9.1%) weights=420/420 activations=/32 io=/2							

Comp	lexity rep	oort per lay	er – <mark>macc=32</mark>	1 weights=420	act=32 ram_io=	2
id	name	c_macc		c_rom		c_id
0 1 2	dense_0 dense_1 dense_2		10.0 10.1       84.7 5.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19.0%        76.2% 4.8%	[0] [1] [2]

Cross Platform Validation Reports

### Keras

Cross accuracy report #1 (reference vs C-model)

NOTE: the output of the reference model is used as ground truth/reference value NOTE: ACC metric is not computed ("--classifier" option can be used to force it)

acc=n.a., rmse=0.000000128, mae=0.000000104, l2r=0.000000225

Evaluation report (summary)

Mode	acc	rmse	mae	l2r	tensor
X-cross #1	n.a.	0.000000128	0.000000104	0.000000225	<pre>dense_5, ai_float, [(1, 1, 1)], m_id=[2]</pre>

X-cross (l2r) #1 error : 2.25302543e-07 (expected to be < 0.01)

Cross accuracy report #1 (reference vs C-model)

NOTE: the output of the reference model is used as ground truth/reference value NOTE: ACC metric is not computed ("--classifier" option can be used to force it)

acc=n.a., rmse=0.000000000, mae=0.000000000, l2r=0.000000000

Evaluation report (summary)

Mode	acc	rmse	mae	l2r	tensor
X-cross #1	n.a.	0.000000000	0.000000000	0.000000000	dense_2, ai_i8, [(1, 1, 1)], m_id=[2]

X-cross (rmse) #1 error : 0.00000000e+00 (expected to be < 0.01)

Creating txt report file /Users/beningo/.stm32cubemx/sinemodel_validate_report.txt elapsed time (validate): 1.453s

![](_page_24_Picture_16.jpeg)

![](_page_24_Picture_17.jpeg)

![](_page_24_Picture_18.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_2.jpeg)

### Generate the Model

Pinout & Co	nfiguration	Clock Configuration			
Project	Project Settings Project Name MachineLearning_Hellow Project Location /Users/beningo/ML_Hell	orld		Browse	
Code Generator	Application Structure Advanced Toolchain Folder Location /Users/beningo/ML_Hell Toolchain / IDE STM32CubeIDE	n oWorld/MachineLearn	Do not generate the main() ing_HelloWorld/	nder Root	
Advanced Settings	Linker Settings Minimum Heap Size Minimum Stack Size	0x200 0x1000			
	Mcu and Firmware Packag Mcu Reference STM32L475VGTX	le			
	STM32Cube FW_L4 V1.17	Location			
	/Users/beningo/STM32C	ube/Repository/STM3	2Cube_FW_L4_V1.17.0	Browse	

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_2.jpeg)

### The Application Template

122 /* Initialize all configured peripherals */ 123 MX_GPI0_Init(); 124 MX CRC Init(); 125 MX DFSDM1 Init(); 126 MX I2C2 Init(); 127 MX QUADSPI Init(); 128 MX SPI3 Init(); 129 MX USART1 UART Init(); MX_USART3_UART_Init(); 130 MX USB OTG FS PCD Init(); 131 132 MX_X_CUBE_AI_Init(); 133 /* USER CODE BEGIN 2 */ 134 135 /* USER CODE END 2 */ 136 137 /* Infinite loop */ 138 /* USER CODE BEGIN WHILE */ 139 while (1) 140 ł 141 /* USER CODE END WHILE */ 142 MX X CUBE AI Process(); 143 144 /* USER CODE BEGIN 3 */ 145 } 146 /* USER CODE END 3 */ 147 }

- 78⊖ /* Private user code --79 /* USER CODE BEGIN 0 */ 80⊖ int write(int file, char *ptr, int len) 81 { 82 HAL UART Transmit(&huart1, (uint8 t *)ptr, len, 0xfffff); // send message via UART 83 84 return len; 85 } ____ /* 2 - main loop */ 254 do { 255 256 /* 1 - acquire and pre-process input data */ res = acquire and process data(in data); 257 /* 2 - process the data - call inference engine */ 258 **if** (res == 0) 259 260 res = ai run(in data, out data); 261 262 263 /* 3- post-process the predictions */ 264 **if** (res == 0) 265 266 267 res = post_process(out_data); 268
  - } while (res==0);

269

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_2.jpeg)

### The Details

```
174 /* USER CODE BEGIN 2 */
175⊖ int acquire_and_process_data(void * data)
176 {
177
      static uint8_t position = 0;
      uint8_t * Value = data;
178
179
180
      * Value = position;
181
182
      position++;
183
184
      return 0;
185 }
```

```
187⊖ int post_process(void * data)
188 {
       uint8_t * Value = data;
189
190
191
       if(*Value >= 128)
192
       {
193
           *Value -= 128;
194
       }
195
       else
196
       {
197
           *Value += 128;
       }
198
199
200
       return 0;
201 }
```

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_2.jpeg)

### Results

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

### Next Steps

- Connect the output to a PWM LED channel
- Setup a DAC and drive an output voltage
- Configure the rate at which the inference runs (frequency control)
- Try and compare the Keras model behavior
- Improve the training model to provide a more accurate sine wave

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

### **Going Further**

![](_page_30_Figure_4.jpeg)

### https://bit.ly/3nf99EZ

![](_page_30_Figure_6.jpeg)

Introduction to STM32Cube.AI - 1 Marketing introduction
 STMicroelectronics

![](_page_30_Figure_8.jpeg)

Introduction to STM32Cube.AI - 2 Theory of AI STMicroelectronics

![](_page_30_Picture_10.jpeg)

Introduction to STM32Cube.AI - 3 Out of the box lab STMicroelectronics

![](_page_30_Picture_12.jpeg)

Introduction to STM32Cube.AI - 4 NN Model creation using Keras

![](_page_30_Picture_14.jpeg)

STMicroelectronics

![](_page_30_Picture_15.jpeg)

577 Introduction to STM32Cube.AI - 5 STM32Cube.AI labs

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

What would you like to learn more about?

- Developing Keras based models
- How to develop ML test cases
- Building more complex ML edge applications
- other

![](_page_32_Picture_0.jpeg)

### Thank you for attending

Please consider the resources below:

- <u>www.beningo.com</u>
  - Blog, White Papers, Courses
  - Embedded Bytes Newsletter
    - <u>http://bit.ly/1BAHYXm</u>

![](_page_32_Figure_8.jpeg)

From <u>www.beningo.com</u> under

- Blog > CEC – Machine Learning Application Design using STM32 MCUs

CEC Continuing Education Center

![](_page_33_Picture_1.jpeg)

# Thank You

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

SALAN.

![](_page_33_Picture_5.jpeg)