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DAY 5 : Writing Multicore Microcontroller Applications
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Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for 

assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up 

after the lecture portion concludes.
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Course Sessions
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• Multicore Application Architecture Design
• A Quick Review of RTOS Fundamentals
• Digging into the Dual-Core STM32H7 MCU’s
• Toolchain Setup for Dual Core MCU’s
• Writing Multicore Microcontroller Applications
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When is your next multicore application going to be started?
- Working on it right now
- Next 1 – 3 months
- Next 3  - 6 months
- Next 6 – 12 months
- Much later

4



Sponsored By

RTOS Task Decomposition
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1. Identify the major components
2. Draw a high-level block diagram
3. Label the inputs
4. Label the outputs
5. Identify the first-tier tasks
6. Determine concurrency levels and dependencies
7. Identify second tier tasks (application only tasks)
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RTOS Application Design – Single Core
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RTOS Application Design – Dual Core
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1. Partition the Application Domains
2. Decompose each execution domain
3. Identify domain concurrencies and shared 

resources
4. Synchronize cross domain tasks
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RTOS Application Design – Dual Core Example #1
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RTOS Application Design – Dual Core Example #1
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Which of the two examples do you find to be the better solution?
- Example #1
- Example #2
- Neither
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OpenAMP MW
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OpenAMP is an Open-source Asymmetric Multi-Processing framework for 
developing applications on processors with multiple cores.
• Used where each process is under its own domain (no Linux or Windows)
• Based on libmetal which provides:

• OS independent abstraction layer

• A virtual device framework (Virtio)

• A Virtio based messaging system (Rpmsg)

• API’s for life cycle management (Remoteproc)
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OpenAMP MW
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Virtio – shared memory management framework that shares data through 
virtio rings, which are FIFO data queues. (Data buffers).

Rpmsg – virtio-based messaging bus that enables inter-processor 
communications. Can send and receive variable data length message data 
defined by the application. (Must create a communication channel which 
includes a source and destination address).
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An Example OpenAMP Application – Ping Pong
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CPU 1
Arm Cortex-M7

OS- FreeRTOS

CPU 2
Arm Cortex-M4

OS-Baremetal

D3 Shared 
Memory

(0x38000000)

rsc_table.c

HSEM1) Starts M4
2) Init OpenAMP
3) Configure HSEM
4) Setup rpmsg

1) Init OpenAMP
2) Configure HSEM
3) Create rpmsg channel

Message is sent -> CPU Rx and Increments -> Sends back -> Repeat
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An Example OpenAMP Application – Ping Pong
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int MAILBOX_Init(void)
{

__HAL_RCC_HSEM_CLK_ENABLE();

#ifdef CORE_CM7
/* Enable CM7 receive irq */
HAL_NVIC_SetPriority(HSEM1_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(HSEM1_IRQn);
HAL_HSEM_ActivateNotification(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_1));

#endif

#ifdef CORE_CM4
/* Enable CM4 receive irq */
HAL_NVIC_SetPriority(HSEM2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(HSEM2_IRQn);
HAL_HSEM_ActivateNotification(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_0));

#endif
return 0;

}
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An Example OpenAMP Application – Ping Pong
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int MAILBOX_Poll(struct virtio_device *vdev)
{

if (msg_received == RX_NEW_MSG)
{

#ifdef CORE_CM7
rproc_virtio_notified(vdev, VRING0_ID);

#endif
#ifdef CORE_CM4

rproc_virtio_notified(vdev, VRING1_ID);
#endif

msg_received = RX_NO_MSG;
return 0;

}

return -EAGAIN;
}

int MAILBOX_Notify(void *priv, uint32_t id)
{

(void)priv;
(void)id;

#ifdef CORE_CM7
HAL_HSEM_FastTake(HSEM_ID_0);
HAL_HSEM_Release(HSEM_ID_0,0);

#endif
#ifdef CORE_CM4

HAL_HSEM_FastTake(HSEM_ID_1);
HAL_HSEM_Release(HSEM_ID_1,0);

#endif

return 0;
}
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An Example OpenAMP Application – Ping Pong
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Application cm7 

/* Initialize the mailbox use notify the other core on new message */
MAILBOX_Init();

/* Initialize the rpmsg endpoint to set default addresses to RPMSG_ADDR_ANY */
rpmsg_init_ept(&rp_endpoint, RPMSG_CHAN_NAME, RPMSG_ADDR_ANY, RPMSG_ADDR_ANY,

NULL, NULL);
/* Initialize OpenAmp and libmetal libraries */
if (MX_OPENAMP_Init(RPMSG_MASTER, new_service_cb)!= HAL_OK)

Error_Handler();

/*Take HSEM */
HAL_HSEM_FastTake(HSEM_ID_0);
/*Release HSEM in order to notify the CPU2(CM4)*/
HAL_HSEM_Release(HSEM_ID_0,0);

OPENAMP_Wait_EndPointready(&rp_endpoint);
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An Example OpenAMP Application – Ping Pong
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Application cm7 - continued 

/* Send the massage to the remote CPU */
status = OPENAMP_send(&rp_endpoint, &message, sizeof(message));

while (message < 100)
{

/* Receive the massage from the remote CPU */
message = receive_message();
message++;

/* Send the massage to the remote CPU */
status = OPENAMP_send(&rp_endpoint, &message, sizeof(message));
osDelay(1);

if (status < 0)
{
Error_Handler();

}
}
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Which configuration do you think you prefer for Dual Core applications?
- Baremetal <-> Baremetal
- Baremetal <-> RTOS
- RTOS <-> Baremetal
- RTOS <-> RTOS
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Thank you for attending
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Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Introduction to Multicore RTOS-based Application Development

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/


Thank You
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