
By Informa Markets

Introduction to Multicore RTOS-based Application Development

Sponsored by

DAY 5 : Writing Multicore Microcontroller Applications

Sponsored By

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for

assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up

after the lecture portion concludes.

2

Sponsored By

Course Sessions

3

• Multicore Application Architecture Design
• A Quick Review of RTOS Fundamentals
• Digging into the Dual-Core STM32H7 MCU’s
• Toolchain Setup for Dual Core MCU’s
• Writing Multicore Microcontroller Applications

Sponsored By

When is your next multicore application going to be started?
- Working on it right now
- Next 1 – 3 months
- Next 3 - 6 months
- Next 6 – 12 months
- Much later

4

Sponsored By

RTOS Task Decomposition

5

1. Identify the major components
2. Draw a high-level block diagram
3. Label the inputs
4. Label the outputs
5. Identify the first-tier tasks
6. Determine concurrency levels and dependencies
7. Identify second tier tasks (application only tasks)

Sponsored By

RTOS Application Design – Single Core

6

LED
Backlight

LCD

Fan

Memory
Storage

Touch
Screen

Wi-Fi

Bluetooth

Sensors

Process
Data Store

Application

Network
Manager

Task

Process
Inputs
Task

Mem
Manage

Process
Outputs

Print

Stream
Buffer

Stream
Buffer

Stream
Buffer

Stream
Buffer

Stream
Buffer

Queue

Queue

Queue

Queue

ISR

ISR

ISR

ISR

Q

Q

Q

M

S

Sponsored By

RTOS Application Design – Dual Core

7

1. Partition the Application Domains
2. Decompose each execution domain
3. Identify domain concurrencies and shared

resources
4. Synchronize cross domain tasks

Sponsored By

RTOS Application Design – Dual Core Example #1

8

Core 0 – Real-time Core 1 – High PerformanceShared

Touch
Screen

Sensors
Process
Inputs
Task

Queue

QueueISR

ISR

LED
Backlight

Fan

Process
Outputs

LCD PrintStream
Buffer

Process
Data Store

Application

S

S

Queue

Queue

Wi-Fi

Bluetooth

Network
Manager

Task
SB

SB

ISR

SB ISR

SB

Q

Q

Sponsored By

RTOS Application Design – Dual Core Example #1

9

Core 0 – Real-time Core 1 – High PerformanceShared

Touch
Screen

Sensors
Process
Inputs
Task

Queue

QueueISR

ISR

LED
Backlight

Fan

Process
Outputs

LCD PrintStream
Buffer

Shared
Data

App
Core 1

S

Wi-Fi

Bluetooth

Network
Manager

Task
SB

SB

ISR

SB ISR

SB

Q

Q

App
Core 0

Sponsored By

Which of the two examples do you find to be the better solution?
- Example #1
- Example #2
- Neither

10

Sponsored By

OpenAMP MW

11

OpenAMP is an Open-source Asymmetric Multi-Processing framework for
developing applications on processors with multiple cores.
• Used where each process is under its own domain (no Linux or Windows)
• Based on libmetal which provides:

• OS independent abstraction layer

• A virtual device framework (Virtio)

• A Virtio based messaging system (Rpmsg)

• API’s for life cycle management (Remoteproc)

Sponsored By

OpenAMP MW

12

Virtio – shared memory management framework that shares data through
virtio rings, which are FIFO data queues. (Data buffers).

Rpmsg – virtio-based messaging bus that enables inter-processor
communications. Can send and receive variable data length message data
defined by the application. (Must create a communication channel which
includes a source and destination address).

Sponsored By

An Example OpenAMP Application – Ping Pong

13

CPU 1
Arm Cortex-M7

OS- FreeRTOS

CPU 2
Arm Cortex-M4

OS-Baremetal

D3 Shared
Memory

(0x38000000)

rsc_table.c

HSEM1) Starts M4
2) Init OpenAMP
3) Configure HSEM
4) Setup rpmsg

1) Init OpenAMP
2) Configure HSEM
3) Create rpmsg channel

Message is sent -> CPU Rx and Increments -> Sends back -> Repeat

Sponsored By

An Example OpenAMP Application – Ping Pong

14

int MAILBOX_Init(void)
{

__HAL_RCC_HSEM_CLK_ENABLE();

#ifdef CORE_CM7
/* Enable CM7 receive irq */
HAL_NVIC_SetPriority(HSEM1_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(HSEM1_IRQn);
HAL_HSEM_ActivateNotification(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_1));

#endif

#ifdef CORE_CM4
/* Enable CM4 receive irq */
HAL_NVIC_SetPriority(HSEM2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(HSEM2_IRQn);
HAL_HSEM_ActivateNotification(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_0));

#endif
return 0;

}

Sponsored By

An Example OpenAMP Application – Ping Pong

15

int MAILBOX_Poll(struct virtio_device *vdev)
{

if (msg_received == RX_NEW_MSG)
{

#ifdef CORE_CM7
rproc_virtio_notified(vdev, VRING0_ID);

#endif
#ifdef CORE_CM4

rproc_virtio_notified(vdev, VRING1_ID);
#endif

msg_received = RX_NO_MSG;
return 0;

}

return -EAGAIN;
}

int MAILBOX_Notify(void *priv, uint32_t id)
{

(void)priv;
(void)id;

#ifdef CORE_CM7
HAL_HSEM_FastTake(HSEM_ID_0);
HAL_HSEM_Release(HSEM_ID_0,0);

#endif
#ifdef CORE_CM4

HAL_HSEM_FastTake(HSEM_ID_1);
HAL_HSEM_Release(HSEM_ID_1,0);

#endif

return 0;
}

Sponsored By

An Example OpenAMP Application – Ping Pong

16

Application cm7

/* Initialize the mailbox use notify the other core on new message */
MAILBOX_Init();

/* Initialize the rpmsg endpoint to set default addresses to RPMSG_ADDR_ANY */
rpmsg_init_ept(&rp_endpoint, RPMSG_CHAN_NAME, RPMSG_ADDR_ANY, RPMSG_ADDR_ANY,

NULL, NULL);
/* Initialize OpenAmp and libmetal libraries */
if (MX_OPENAMP_Init(RPMSG_MASTER, new_service_cb)!= HAL_OK)

Error_Handler();

/*Take HSEM */
HAL_HSEM_FastTake(HSEM_ID_0);
/*Release HSEM in order to notify the CPU2(CM4)*/
HAL_HSEM_Release(HSEM_ID_0,0);

OPENAMP_Wait_EndPointready(&rp_endpoint);

Sponsored By

An Example OpenAMP Application – Ping Pong

17

Application cm7 - continued

/* Send the massage to the remote CPU */
status = OPENAMP_send(&rp_endpoint, &message, sizeof(message));

while (message < 100)
{

/* Receive the massage from the remote CPU */
message = receive_message();
message++;

/* Send the massage to the remote CPU */
status = OPENAMP_send(&rp_endpoint, &message, sizeof(message));
osDelay(1);

if (status < 0)
{
Error_Handler();

}
}

Sponsored By

Which configuration do you think you prefer for Dual Core applications?
- Baremetal <-> Baremetal
- Baremetal <-> RTOS
- RTOS <-> Baremetal
- RTOS <-> RTOS

18

Sponsored By

Thank you for attending

19

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Introduction to Multicore RTOS-based Application Development

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Thank You

Sponsored by

