Continuing
‘ E‘ Education
Center

Machine Learning Application Design using STM32 MCU’s

DAY 4 : Training a Neural Network Part 2

Sponsored by

News

FECEE L1 @ informamarkets

C c Continuing
E Education Sponsored By
Center

Webinar Logistics

Turn on your system sound to hear the streaming presentation.

If you have technical problems, click “Help” or submit a question asking for
assistance.

Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

Submit questions for the lecturer using the Q&A widget. They will follow-up
after the lecture portion concludes.

Continuing
‘ ‘ Education
Center

Course Sessions

* Introduction to Machine Learning on MCU's

» Capturing, Cleaning and Digital Signal Processing Data
» Training a Neural Network Part 1

* Training a Neural Network Part 2

* Running an Inference on Target

Continuing
‘ ‘ Education
Center

TensorFlow Lite for Microcontrollers

* Runs machine learning models on microcontrollers
« Core run-time is ~16kB

* Does not require an OS (can run baremetal)

* Written in C++ 11

+ Several example cases already available:

* Hello World
+ Keyword spotting (Micro speech)

* Gesture detection (Magic wand)

* Person detection (Image processing)

Continuing -
‘ ‘ Education Sponsored By w)
Center conporarion & | 4

Hello World

* Shall demonstrate running a model
 Shall demonstrate controlling hardware (LED)

STM32L475 loT Discovery Kit (B-L475E-IOTO1A)

100 1

0.75 1
LED2
(PB14)

0.50 A

0.25 1

0.00 A

-0.25 1

-0.50 1

-0.75 1

-1.00 A1

Continuing
‘ ‘ Education
Center

What is your idea of a good hello world program?
- Tests a simple hardware feature?
- Tests a simple software feature?

- Minimum demonstratable feature?
- Other

Continuing

Education Sponsored By w
Center conporarion &5 /

Option #1 - Tensorflow Lite for Microcontrollers

Can download Tensorflow and examples by cloning:

https://github.com/tensorflow/tensorflow

beningo®Jacobs-MacBook-Pro Projects % git clone https://github.com/tensorflow/tensorflow

Cloning into 'tensorflow'...
remote: Enumerating objects: 1134096, done.
remote: Counting objects: 100% (323/323), done.

remote: Compressing objects: 100% (220/220), done.

remote: Total 1134096 (delta 164), reused 169 (delta 103), pack-reused 1133773
Receiving objects: 100% (1134096/1134096), 667.32 MiB | 13.17 MiB/s, done.
Resolving deltas: 100% (924832/924832), done.

Updating files: 100% (24712/24712), done.

beningo@Jacobs-MacBook-Pro Projects % ||

https://github.com/tensorflow/tensorflow

Continuing
‘ ‘ Education
Center

Option #2 - Google Colab

Colaboratory, or "Colab" for short, allows you to write and execute Python in
your browser, with

 Zero configuration required

* Free access to GPUs

 Easy sharing

Often used in:

« Data science

* Machine learning
* etc

Continuing -
Education Sponsored By

Center CORPORATION /

train_hello_world_model.ipynb

Google Colab training file

~ Train a Simple TensorFlow Lite for Microcontrollers model

This notebook demonstrates the process of training a 2.5 kB model using TensorFlow and converting it for use with TensorFlow Lite for
Microcontrollers.

Deep learning networks learn to model patterns in underlying data. Here, we're going to train a network to model data generated by a sine
function. This will result in a model that can take a value, x, and predict its sine, y.

The model created in this notebook is used in the hello_world example for TensorFlow Lite for MicroControllers.

Run in Google Colab OView source on GitHub

https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb

Continuing -
‘ ‘ Education Sponsored By m
Center conronarion @5 /

Edit View Insert Runtime Tools Hel

IMPORTANT!

Select all cells 38/Ctrl+Shift+A -
Before you start to run the notebook, C o

make sure that the notebook output ’
has been cleared! 3

Cut cell or selection

Copy cell or selection

Paste I
3

Delete selected cells 38 /Ctrl+M D |

Find and replace 38/Ctrl+H |

Find next 38/Ctr+G
‘ Find previous 38 /Ctrl+Shift+G

Notebook settings

Clear all outputs (10

Continuing
‘ ‘ Education
Center

Will be attempting to run this notebook. ..
- Live during the session

- Later after the session

- Never, just listening in

- Other

11

Continuing -
Educatlon Sponsored By m
Center CORPORATION /

Training the Model

v Configure Defaults

Run
the cm # Define paths to model files

import os
MODELS _DIR = 'models/'
if not os.path.exists(MODELS DIR):
os.mkdir (MODELS DIR)
MODEL_TF = MODELS DIR + 'model'’
MODEL_NO QUANT TFLITE = MODELS DIR + 'model no quant.tflite'’
MODEL_TFLITE = MODELS DIR + 'model.tflite’
MODEL_TFLITE MICRO = MODELS DIR + 'model.cc'’

12

Continuing
‘ ‘ Education
Center

Training the Model

Before
cO () train_hello_world_model.ipynb

File Edit View Insert Runtime Tools

Files X

<>

» [sample_data

&

<>

Sponsored By w
CORPORATION /

After
() train_hello_world_model.ipynb

File Edit View Insert Runtime Tools

Files X

I » BB .r.nodels I

»

@B sample_data

13

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

Import Dependencies

[1 # TensorFlow is an open source machine learning library

A 4 Setup EnVironment import tensorflow as tf

Keras is TensorFlow's high-level API for deep learning
|nsta” DependenCieS from tensorflow import keras
Numpy is a math library
import numpy as np
Pandas is a data manipulation library
! pip install tensorflow==2.4.0 import pandas as pd
Matplotlib is a graphing library
import matplotlib.pyplot as plt
Math is Python's math library
import math

Collecting tensorflow==2.4.0

Set seed for experiment reproducibility
seed = 1

np.random.seed(seed)
tf.random.set_seed(seed)

14

Continuing
Education
Center

Sponsored By m
CORPORATION /////

Training the Model

v 1. Generate Data

The code in the following cell will generate a set of random x values, calculate their sine values, and display them on a graph.

[

]

Number of sample datapoints
SAMPLES = 1000

Generate a uniformly distributed set of random numbers in the range from
0 to 2m, which covers a complete sine wave oscillation
x_values = np.random.uniform(

low=0, high=2*math.pi, size=SAMPLES).astype(np.float32)

Shuffle the values to guarantee they're not in order
np.random.shuffle(x _values)

Calculate the corresponding sine values
y_values = np.sin(x values).astype(np.float32)

Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y values, 'b.")
plt.show()

15

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

v 2. Add Noise

Since it was generated directly by the sine function, our data fits a nice, smooth curve.

However, machine learning models are good at extracting underlying meaning from messy, real world data. To demonstrate this, we can add
some noise to our data to approximate something more life-like.

In the following cell, we'll add some random noise to each value, then draw a new graph:

[1 # Add a small random number to each y value
y _values +=* np.random.randn(*y values.shape)

Plot our data

plt.plot(x_values, y_values, 'b.')
plt.show()

16

Continuing -
‘ ‘ Education Sponsored By w
Center conporarion @5 /

Training the Model

0.1 0.3
10 1
05 -
o,
L Y}
0.0 - P ’.i
St
e .
-0.5 0 ah T{ A
. 3*..'
-1.0 - $':
0 1 2 3 4 5 6 0 1 2 3 a 5 6

17

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

[1 # We'll use 60% of our data for training and 20% for testing. The remaining 20%
will be used for validation. Calculate the indices of each section.

TRAIN SPLIT = int(0.6 * SAMPLES) =
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT) Easltn
10 1
Validate
Use np.split to chop our data into three parts.
The second argument to np.split is an array of indices where the data will be 05 1
split. We provide two indices, so the data will be divided into three chunks.
LR
X_train, x_test, x_validate = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT]) 0.0 1
y_train, y test, y validate = np.split(y_values, [TRAIN_SPLIT, TEST SPLIT]) S
-0.5 ‘{
Double check that our splits add up correctly ¢
assert (xX_train.size + x validate.size + x_test.size) == SAMPLES v :?!5
Plot the data in each partition in different colors:

plt.plot(x _train, y train, 'b.', label="Train") 0 1 2 3 - 5 6
plt.plot(x _test, y test, 'r.', label="Test")

plt.plot(x validate, y validate, 'y.', label="Validate")

plt.legend()

plt.show()

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

Note: To learn more about how neural networks function, you can explore the Learn TensorFlow codelabs.

The code in the following cell defines our model using Keras, TensorFlow's high-level API for creating deep learning networks. Once the network
is defined, we compile it, specifying parameters that determine how it will be trained:

[1 # We'll use Keras to create a simple model architecture

= tf.keras.Sequential()
First layer takes a scalar input and feeds it through 8 "neurons". The
neurons decide whether to activate based on the 'relu' activation function.

model 1.add(keras.layers.Dense(8, activation='relu', input shape=(1,)))

Final layer is a single neuron, since we want to output a single value
model 1.add(keras.layers.Dense(1l))

Compile the model using the standard 'adam' optimizer and the mean squared error or 'mse' loss function for regression.
model l.compile(optimizer='adam', loss='mse', metrics=['mae'])

19

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

[1] # Train the model on our training data while validating on our validation set
history 1 = model 1.fit(x_train, y train, epochs=500, batch size=64,
validation data=(x validate, y validate))

Epoch 494/500

10/10 [= =] - 0s 6ms/step - loss: 0.1721 - mae: 0.3546 - val_loss: 0.1424 - val mae: 0.3238
Epoch 495/500
10/10 [] - 0s 6ms/step - loss: 0.1809 - mae: 0.3705 - val loss: 0.1426 - val mae: 0.3240
Epoch 496/500
10/10 [=====] - 0s 7ms/step - loss: 0.1595 - mae: 0.3459 - val loss: 0.1424 - val mae: 0.3238
Epoch 497/500
10/10 [===== =] - 0s Tms/step - loss: 0.1726 - mae: 0.3576 - val_loss: 0.1431 - val mae: 0.3247
Epoch 498/500
10/10 [] - O0s 7ms/step - loss: 0.1676 - mae: 0.3575 - val loss: 0.1425 - val mae: 0.3239
Epoch 499/500
10/10 [] - 0s 7ms/step - loss: 0.1697 - mae: 0.3566 - val loss: 0.1437 - val mae: 0.3256
Epoch 500/500
10/10 [] - 0s 6ms/step - loss: 0.1684 - mae: 0.3548 - val loss: 0.1431 - val mae: 0.3248

20

Continuing
Education
Center

Sponsored By w
CORPORATION /

Training the Model

° # Draw a graph of the loss, which is the distance between
the predicted and actual values during training and validation.
train_loss = history_ 1l.history['loss']
val_loss = history l.history['val loss']

epochs = range(l, len(train loss) + 1)

plt.plot(epochs, train_loss, 'g.', label='Training loss')
plt.plot(epochs, val loss, 'b', label='Validation loss')
plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss"')

plt.legend()

plt.show()

Training and validation loss

0.7
« Taining loss

- Validation loss
06

05

Loss

04

03

0.2

0 100 200 300 400 500
Epochs

O npit.cifq)

Draw a graph of mean absolute error, which is another way of
measuring the amount of error in the prediction.

train_mae = history_l.history['mae’]

val_mae = history_l.history['val mae']

plt.plot(epochs[SKIP:], train mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')

plt.xlabel('Epochs')

plt.ylabel('MAE')

plt.legend()

plt.show()

Training and validation mean absolute error

044 « Taining MAE
* Validation MAE
042
040 \
w
g 038 H
0.36 =
034 3
032
100 200 300 400 500

Epochs

21

Continuing

Education Sponsored By w
Center CORPORATION /

Training the Model

° # Calculate and print the loss on our test dataset
test_loss, test_mae = model_l.evaluate(x test, y test)

Make predictions based on our test dataset
y_test_pred = model_l.predict(x_test)

Graph the predictions against the actual values
plt.clf()

plt.title('Comparison of predictions and actual values')
plt.plot(x_test, y test, 'b.', label='Actual values')

plt.plot(x_test, y test pred, 'r.', label='TF predictions')
plt.legend()

plt.show()
7/7 [] - 0s 2ms/step - loss: 0.1935 - mae: 0.3768
Comparison of predictions and actual values
. e Actual values
L ~ « TF predictions
10 0 ¢ A
“ [- e
S —— . —— - .
os{ §° \s_..' o
~
it 1
00 ® " - .
':.- 2 ~'\

. 'i?-.'.-i“g:;? .

Continuing
Education
Center

Training the Model

Update the Model and run again

Loss

0.07 1

0.06

0.05 1

0.04 1

0.03 1

0.02

0.01 1

Training and validation loss

« Training loss
« Validation loss

100 150 200 250 300 350 400 450 500
Epochs

MAE

0.20 1

0.18 1

0.16 1

0.14 1

0.12 1

0.10 1

0.08

Sponsored By

Training and validation mean absolute error

« Training MAE
e \Validation MAE

‘*v

100 150 200 250 300 350 400 450 500
Epochs

-

CORPORATION

23

' 4

Continuing -
Educatlon Sponsored By m
Center CORPORATION /

Training the Model

° # Calculate and print the loss on our test dataset
test_loss, test _mae = model.evaluate(x_test, y_test)

Make predictions based on our test dataset
y _test pred = model.predict(x test)

Graph the predictions against the actual values

pilE el ()

plt.title('Comparison of predictions and actual values')
plt.plot(x _test, y test, 'b.', label='Actual values')
plt.plot(x _test, y test pred, 'r.', label='TF predicted')
plt.legend()

plt.show()

Imodel_l.save(MODEL_TF+"model.h5")I

24

Continuing P
Educatlon Sponsored By w
Center CORPORATION /

Training the Model

7/7 [==============================] - (s 2ms/step - loss: 0.0120 - mae: 0.0891
Comparison of predictions and actual values
" e Actual values
10 1 .):z.l."*. « TF predicted

s s le

0.5 - Jt{ ':.‘
1 4

: N
004 s 'S"‘(
e .
pe-4 .
4. &
. -
'}“ w4
-10 4 ‘.4'.&.(0
0 1 2 3 4 5 6

25

Continuing -
‘ ‘ Education Sponsored By m
Center conronarion @5 /

Generate a TensorFlow Lite Model

* Run through and run the blocks in this section.
» Make sure you read up on what is being done and why.

Loss/MSE
Size
Model
Model
TensorFlow 0.0120
TensorFlow 4096 bytes
Aensortiow:lite 0.0120 TensorFlow Lite 2788 bytes (reduced by 1308 bytes)

TensorFlow Lite Quantized 0.0134 TensorFlow Lite Quantized 2488 bytes (reduced by 300 bytes)

26

Continuing
Education
Center

Sponsored By m
CORPORATION /////

Save your models!

<>

-

4

@ models

~ [model
» [assets
» ([@ variables

i saved_model.pb

X

ﬁ model.tflite
B model_no_quant tflite
ﬁ modelmodel.h5

B sample_data

+ Code + Text S C
(PR
[39]
0.02
0.01
100 150
Great results! From the
e The overall loss ¢
e Metrics are bette
Download ¢
Rename file l‘
Delete file \
Copy path

Refresh t

27

C c Continuing -
E Educatlon Sponsored By
Center CORPORATION

Which ML model seems to best fit the MCU?
- TensorFlow

- TensorFlow Lite

- TensorFlow lite quantized

28

Continuing
‘ ‘ Education
Center

Thank you for attending

Please consider the resources below:
* www.beningo.com

* Blog, White Papers, Courses
« Embedded Bytes Newsletter
* http://bit.ly/1BAHYXm

From www.beningo.com under
- Blog > CEC — Machine Learning Application Design using STM32 MCUs

29

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

News

L Q) informamarkets

