
By Informa Markets

Techniques for Interfacing with Modern Sensors

Sponsored by

DAY 3 : Sensor Driver Techniques Part 1

Sponsored By

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for

assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up

after the lecture portion concludes.

2

Sponsored By

Course Sessions

3

• Introduction to Modern Sensor Interfacing
• Designing Sensor Interfaces
• Sensor Driver Techniques Part 1
• Sensor Driver Techniques Part 2
• Leveraging C++ in Sensor Interfacing

Sponsored By

General Sensor Driver Design Patterns

4

Technique Complexity Efficiency

Polling Low Low

Interrupt Medium Medium

DMA Driven Medium High

Sponsored By

Which technique do you use the most for your drivers?
- Polling
- Interrupt
- DMA
- Other

5

Sponsored By

Technique #1 – Polled Drivers

6

Advantages
• Simple to implement
• Fast to implement
• Low complexity

Disadvantages
• Inefficient
• May block code execution

Code Example:

uint16_t Adc_Sample(void)
{

Adc_Start();

while(ADC_COMPLETE_FLAG == FALSE);

AdcResults = Adc_ReadAll();

return AdcResults;
}

Sponsored By

Technique #1 – Polled Drivers

7

Application Application DriverDriver

Sponsored By

Technique #2 – Interrupt Driven Drivers

8

Advantages
• Efficient
• Easy to implement
• Can have run-time specified

behavior

Disadvantages
• More complex to setup
• Potential context issues

Application Driver

Sponsored By

Callbacks

9

Driver
Library
Kernel

Application

CallbackMain

Callback_Register

Signal Handler

Invoke
Callback

Sponsored By

How often do you use callbacks in your software?
- 85 – 100% of the time
- 50 – 85% of the time
- 25 – 50% of the time
- Rarely, if ever

10

Sponsored By

Interrupt Driven Driver Example - ADC

11

Image Source: https://microchipdeveloper.com/boards:sam-e54-xpro

Sponsored By

Harmony ADC API’s

12

void ADC0_Initialize(void);
void ADC0_Enable(void);
void ADC0_Disable(void);
void ADC0_ChannelSelect(ADC_POSINPUT positiveInput, ADC_NEGINPUT negativeInput);
void ADC0_ConversionStart(void);
uint16_t ADC0_ConversionResultGet(void);
void ADC0_ComparisonWindowSet(uint16_t low_threshold, uint16_t high_threshold);
void ADC0_WindowModeSet(ADC_WINMODE mode);
uint16_t ADC0_LastConversionResultGet(void);
void ADC0_InterruptsClear(ADC_STATUS interruptMask);
void ADC0_InterruptsEnable(ADC_STATUS interruptMask);
void ADC0_InterruptsDisable(ADC_STATUS interruptMask);
void ADC0_CallbackRegister(ADC_CALLBACK callback, uintptr_t context);

Sponsored By

The ADC Interrupt

13

void ADC0_RESRDY_InterruptHandler(void)
{

ADC_STATUS status;
status = (ADC_STATUS) (ADC0_REGS->ADC_INTFLAG & ADC_INTFLAG_RESRDY_Msk);

/* Clear interrupt flag */
ADC0_REGS->ADC_INTFLAG = ADC_INTFLAG_RESRDY_Msk;

if (ADC0_CallbackObject.callback != NULL)
{

ADC0_CallbackObject.callback(status, ADC0_CallbackObject.context);
}

}

“Safety”
check

Sponsored By

The ADC Callback

14

void Adc_SampleCompleteCallback(ADC_STATUS status, uintptr_t context)
{

AdcConversion_t * const AdcConversion = (AdcConversion_t * const)context;

if(status == ADC_STATUS_RESRDY)
{

// Determine which conversion this is so we know where to store it.
if(AdcConversion->Port == ADC_PORT_0)
{

Adc_Store_Port0(AdcConversion);
}
else
{

Adc_Store_Port1(AdcConversion);
}

}
else
{

// Don't do anything.
}

}

Sponsored By

AdcConversion_t

15

/**
* Defines a structure that maintains the adc conversion information for a
* conversion that is progress.
*/
typedef struct
{

AdcPort_t Port; /**< Defines the adc port that will be converted */
uint8_t Channel; /**< Defines the channel on the port to convert */
bool IsComplete; /**< Defines if the conversion is currently complete */

}AdcConversion_t;

Sponsored By

Running the driver

16

AdcConversion_t AdcConversion0 = {ADC_PORT_0, ADC_INPUTCTRL_MUXPOS_AIN0, true};
AdcConversion_t AdcConversion1 = {ADC_PORT_1, ADC_INPUTCTRL_MUXPOS_AIN0, true};

// Register the ADC Callback that will save the sample and kick-off additional
// samples.
ADC0_CallbackRegister(Adc_SampleCompleteCallback, (uintptr_t)&AdcConversion0);
ADC1_CallbackRegister(Adc_SampleCompleteCallback, (uintptr_t)&AdcConversion1);

ADC0_Enable();
ADC1_Enable();

Sponsored By

Running the driver

17

if(AdcConversion0.IsComplete == true && AdcConversion1.IsComplete == true)
{

// Start sampling the next sensors
AdcConversion0.IsComplete = false;
AdcConversion0.Channel = 0;

AdcConversion1.IsComplete = false;
AdcConversion1.Channel = 0;

ADC0_ChannelSelect(channel, ADC_INPUTCTRL_MUXNEG_GND);
ADC1_ChannelSelect(channel, ADC_INPUTCTRL_MUXNEG_GND);

ADC0_ConversionStart();
ADC1_ConversionStart();

}

Sponsored By

Which of the following do you think best describes this technique?
- Simple and easy
- Complex but efficient
- Powerful and scalable
- I haven’t decided yet

18

Sponsored By

Thank you for attending

19

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Techniques for Interfacing with Modern Sensors

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Thank You

Sponsored by

