Continuing
‘ E‘ Education
Center

Introduction to Multicore RTOS-based Application Development

DAY 2 : A Quick Review of RTOS Fundamentals

Sponsored by

= = 7 ®
(o]] (L1] I /-
 ‘ J’ 1] L \ !
- &Y siecTronics

News

CEere Q) informamarkets

Continuing -
‘ ‘ Education Sponsored By (UL IENGE)
Center W corporarion &

Webinar Logistics

Turn on your system sound to hear the streaming presentation.

f you have technical problems, click “Help” or submit a question asking for

assistance.

Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

Submit questions for the lecturer using the Q&A widget. They will follow-up
after the lecture portion concludes.

Continuing
‘ ‘ Education
Center

Course Sessions

Multicore Application Architecture Design

A Quick Review of RTOS Fundamentals
Digging into the Dual-Core STM32H7 MCU's
Toolchain Setup for Dual Core MCU's

Writing Multicore Microcontroller Applications

c C Continuing
E Education Sponsored By
Center

RTOS Characteristics

A Real-Time Operating System (RTOS) is an operating system designed to manage hardware resources
of an embedded system with very precise timing and a high degree of reliability.

Reliability

Predictability - RTOS - Scalability

Compactness

Performance Multi-Threading

Continuing
‘ E‘ Education

Center

Real-time Operating Systems

Kernel

Scheduler

Timers Kernel Services:

Time Management
Memory Management

Device Management
Other

Sponsored By

Semaphores

Mutexes

Message Queues

Event Flags

Mailboxes

Continuing
‘ ‘ Education Sponsored By
Center

Real-time Operating Systems

Provide developers with a mechanism to reliably schedule tasks
Create the illusion that tasks are running concurrently

Shared resources

Mechanisms to protect

Critical sections

b o
v Include basic capabilities to synchronize tasks
(@

Developers still need to mind their task timing!

% May be certified to ensure the kernel won't introduce bugs!

Continuing -
‘ ‘ Education Sponsored By (UL IENGE)
Center W corporarion &

Tasks, Thread and Processes

LEl pefinition:

[11A task is a concurrent and independent program that competes for execution time
on a CPU.

(2] a semi-independent portion of the application that carries out a specific duty.

LLE]] Definition:
[11A thread is a semi-independent program segment that executes within a process.

LLE]| Definition:

[11A process is a collection of threads and associated memory that run in an
independent memory location.

Continuing
Education
Center

Task Anatomy in FreeRTOS

Task initialization data

K

Sponsored By

{

void Task LedBlink(

void *pvParameters |)

const TickType t xDelay =

500 / portTICK PERIOD MS;

for (;;))

{ Semi-independent
HAL GPIO TogglePin (GPIOB, LED2 Pin); orogram that looks like
vTaskDelay (xDelay) ; rﬂahﬂo

) -

\

Task yields until event!

Continuing
Education Sponsored By

Center

RTOS Applications

Semi-)

54-void Led_BlueBlink(void *pvParameters)
; 85 {
128 /*lint -save -e978 Disable MISRA lndependent 66 const TickType t xDelay = 588 / portTICK_PERIOD MS;
129- int main(void) 67 uint32_t BlueDelay = @;
prog rams const uint32_t TargetCount = 168808;

138 /S*lint -restore Enable MISRA rule
131 {

Write your local variable definition here */ for(;;)

CODE! 1!

y Processor Expert internal initialization. DON'T REMOVE THIS CODE
PE_low_level init();
'*#** End of Processor Expert inmternal initialization.

LED_Blue On();

Delay_Nonsense(&BlueDelay, &TargetCount);
vTaskDelay(xDelay);

LED _Blue OFff();
Delay_Nonsense(&BlueDelay, &TargetCount);

/* For example: for{;;) { } */ vTaskDelay(xDelay);
xTaskCreate(Led_GreenBlink, /* Task Pointer */
(const char* const)"led green”,/* Task Name */
configMINIMAL STACK SIZE, /* Stack Depth */
a, /* Parameters to pass to task*/
3. /* Task Priority */ . . .
a); /* Pacs handle to created task */ void Led_RedBlink(void *pvParameters)
: 1
xTaskCreate(Led RedBlink, /* Task Pointer */ 83 const TickType t xDelay = 188 / portTICK _PERIOD MS;
(const char* const)“led_red", /* Task Name */ o U1”t32_1|3 REEJ‘Delay = a;
configMINIMAL_STACK_SIZE, /* Stack Depth */ const uint3Z_t Targettount = 168999;
a, /* Parameters to pass to task*/
2, /* Task Priority */ for(55)
a); /* Pass handle to created task */ {
LED_Red_On();
wTaskCreate(Led_BlueBlink, /* Task Pointer */ Delay Nonsense(&RedDelay, &TargetCount);
(const char* const)"led blue™, /* Task Name */ vTaskDelay(xDelay);
configMINIMAL STACK SIZE, /* stack Depth */ LED_Red OFf();
a - - /* Parameters to pass to task*/ Delay MNonsense(&RedDelay, &TargetCount);
1 7% Task Priority */ : e vTaskDelay(xDelay);
, y s ority *, o
@) /* Pass handle to created task */ == 3
96 } 9

Continuing
‘ ‘ Education
Center

Which of the following is the definition of a process?

« aconcurrent and independent program that competes for execution
time on a CPU.

* asemi-independent program segment

* a collection of threads and associated memory that run in an
independent memory location

10

c C Continuing
E Education Sponsored By
Center

Application Synchronization and Notification

Semaphores (Sync and Notify) Mutexes (Mutual Exclusion)
Give Give (Unlock)
> o -
Task z Task @E
Take Take (Lock)
< <
Message Queues (Communication) Event Flags (Synchronization)
b EEEEEDAD
Task 1 == ' | = Task 2 T T
SRRSO R SRR
EEEEEEEEEEEEESR Bitx Blto

11

Continuing
Education Sponsored By

Center

Semaphores

A semaphore is used to synchronize application
behavior between

« An ISR and a task
* One task to another task

 Occasionally are used to protect a shared
resource but this is not their primary purpose

Semaphores use flags or tokens to count
between O and a maximum set value.

« Binary Semaphores

« Counting Semaphores

12

Continuing
Education

Sponsored By
Center

Mutexes

A mutex is used to gain access to a
shared resource such as

« A memory location

« Acommon peripheral like a UART

Mutexes have the concept of providing a task
ownership over the shared resource.

Mutexes have a property known as priority inheritance
which protects an application from priority inversions.

13

c C Continuing
E Education Sponsored By
Center

Message Queues

A message queue is a buffer-like structure that
can be used for

° Synchronization -----------------------------

T ITITITIT I "TVITITITIY

« Passing data between tasks

- e e
-

v -~
/ 3
[} §
4]
[} ¢

1

-

l

fr s s o A e B v i v A - s

Can be configured for —eeesssssssssssssaaaananns
* First In First Out (FIFO)
 Last in First Out (LIFO)

14

c C Continuing
E Education Sponsored By
Center

Event Flags

Event flags (groups) are a group of individual bits
that are used for task

 Synchronization

) o ¢

« Notification — — —

Each bit is considered a flag that notifies when an n n n n n n n

event has occurred. They can be triggered by

 Interrupts
 Tasks Bit X Bit O

May be 8, 16, or 32 bits wide

15

Continuing -
‘ ‘ Education Sponsored By | iy
Center

Which of the following is used to provide mutually exclusive access to a
resource?

« Semaphore

« Mutex

* Message Queue
- Event Flags

16

c c Continuing
E Education Sponsored By
Center

Multicore RTOS Configurations

Option #1 Option #2

17

Continuing
‘ ‘ Education
Center

Which RTOS configuration do you think is the most common?

Same RTOS for each core
Different RTOS for each core
One RTOS for each core
Other

18

c C Continuing P
E Education Sponsored By
Center

Thank you for attending

Please consider the resources below:
* www.beningo.com

- Blog, White Papers, Courses
« Embedded Bytes Newsletter
« http://bit.ly/1BAHYXm

From www.beningo.com under
- Blog > CEC - Introduction to Multicore RTOS-based Application Development

19

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

News

sy (¢ (@; informamarkets

