
By Informa Markets

Introduction to Multicore RTOS-based Application Development

Sponsored by

DAY 2 : A Quick Review of RTOS Fundamentals

Sponsored By

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for

assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up

after the lecture portion concludes.

2

Sponsored By

Course Sessions

3

• Multicore Application Architecture Design
• A Quick Review of RTOS Fundamentals
• Digging into the Dual-Core STM32H7 MCU’s
• Toolchain Setup for Dual Core MCU’s
• Writing Multicore Microcontroller Applications

Sponsored By

RTOS Characteristics

4

A Real-Time Operating System (RTOS) is an operating system designed to manage hardware resources
of an embedded system with very precise timing and a high degree of reliability.

RTOS

Reliability

Predictability

Performance

Compactness

Scalability

Multi-Threading

Sponsored By

Real-time Operating Systems

5

Scheduler

Kernel Services:

• Time Management
• Memory Management
• Device Management
• Other

Tasks

Kernel

ISR’s

Semaphores

Mutexes

Message Queues

Event Flags

Events

Pipes

MailboxesTimers

Sponsored By

Real-time Operating Systems

6

Provide developers with a mechanism to reliably schedule tasks

Create the illusion that tasks are running concurrently

Include basic capabilities to synchronize tasks

Mechanisms to protect
Shared resources

Critical sections

Developers still need to mind their task timing!

May be certified to ensure the kernel won’t introduce bugs!

Sponsored By

Tasks, Thread and Processes

7

Definition:

[1] A task is a concurrent and independent program that competes for execution time
on a CPU.
[2] a semi-independent portion of the application that carries out a specific duty.

Definition:

[1] A thread is a semi-independent program segment that executes within a process.

Definition:

[1] A process is a collection of threads and associated memory that run in an
independent memory location.

Sponsored By

Task Anatomy in FreeRTOS

8

void Task_LedBlink(void *pvParameters)

{

const TickType_t xDelay = 500 / portTICK_PERIOD_MS;

for(;;)

{

HAL_GPIO_TogglePin(GPIOB, LED2_Pin);

vTaskDelay(xDelay);

}

}

Semi-independent
program that looks like
main()

Task initialization data

Task yields until event!

Sponsored By

RTOS Applications

9

Semi-
independent
Programs

Sponsored By

Which of the following is the definition of a process?

10

• a concurrent and independent program that competes for execution
time on a CPU.

• a semi-independent program segment
• a collection of threads and associated memory that run in an

independent memory location

Sponsored By

Application Synchronization and Notification

11

Task Task

Task 2Task 1

0 1 0

Bit 0Bit X

Semaphores (Sync and Notify) Mutexes (Mutual Exclusion)

Message Queues (Communication) Event Flags (Synchronization)

Give

Take

Give (Unlock)

Take (Lock)

Sponsored By

Semaphores

12

A semaphore is used to synchronize application
behavior between

• An ISR and a task

• One task to another task

• Occasionally are used to protect a shared
resource but this is not their primary purpose

Semaphores use flags or tokens to count
between 0 and a maximum set value.

• Binary Semaphores

• Counting Semaphores

Sponsored By

Mutexes

13

A mutex is used to gain access to a
shared resource such as

• A memory location

• A common peripheral like a UART

Mutexes have the concept of providing a task
ownership over the shared resource.

Mutexes have a property known as priority inheritance
which protects an application from priority inversions.

Sponsored By

Message Queues

14

A message queue is a buffer-like structure that
can be used for

• Synchronization

• Passing data between tasks

Can be configured for

• First In First Out (FIFO)

• Last in First Out (LIFO)

Sponsored By

Event Flags

15

1 0 1 0 0 0 1 0

Bit 0Bit X

Event flags (groups) are a group of individual bits
that are used for task

• Synchronization

• Notification

Each bit is considered a flag that notifies when an
event has occurred. They can be triggered by

• Interrupts

• Tasks

May be 8, 16, or 32 bits wide

Sponsored By

Which of the following is used to provide mutually exclusive access to a
resource?

16

• Semaphore
• Mutex
• Message Queue
• Event Flags

Sponsored By

Multicore RTOS Configurations

17

Core 1

RTOS 1

Core 2

RTOS 2

Option #1

Core 1

RTOS

Core 2

Option #2

Sponsored By

Which RTOS configuration do you think is the most common?

18

• Same RTOS for each core
• Different RTOS for each core
• One RTOS for each core
• Other

Sponsored By

Thank you for attending

19

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Introduction to Multicore RTOS-based Application Development

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Thank You

Sponsored by

