
By Informa Markets

Techniques for Interfacing with Modern Sensors

Sponsored by

DAY 2 : Designing Sensor Interfaces

Sponsored By

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for

assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up

after the lecture portion concludes.

2

Sponsored By

Course Sessions

3

• Introduction to Modern Sensor Interfacing
• Designing Sensor Interfaces
• Sensor Driver Techniques Part 1
• Sensor Driver Techniques Part 2
• Leveraging C++ in Sensor Interfacing

Sponsored By

Example System

4

Microcontroller

Humidity
I2C

I/O Expander
SPI_0

Temperature
ADC

Motor Controller
SPI_1

Sponsored By

How many peripheral buses does your typical embedded system use for
sensor interfacing?

5

• 1
• 2 – 4
• 5 – 6
• 7+

Sponsored By

Benefits to creating an interface

6

• Reversing the code dependency direction
• Enhancing portability
• Abstracted complexity and low-level details
• Increasing reuse and scalability
• Simplifying software maintenance

Sponsored By

Abstraction

7

Application

Sensor API

I2C SensorAdc Sensor SPI Sensor

Abstraction

Sponsored By

The Basic Sensor APIs – The Interface

8

Sensor API

Sensor Config

SensorConfig_t * const Sensor_ConfigGet(void);

Sensor

bool Sensor_Init(SensorConfig_t const * const Config);
bool Sensor_Read(const SensorObj_t * const, SensorData_t * const SensorData);
bool Sensor_Write(const SensorObj_t * const, SensorData_t * const SensorData);

Sponsored By

The Basic Sensor APIs – The Types

9

Sensor API

Sensor Config

SensorConfig_t * const Sensor_ConfigGet(void);

Sensor

bool Sensor_Init(SensorConfig_t const * const Config);
bool Sensor_Read(const SensorObj_t * const, SensorData_t * const SensorData);
bool Sensor_Write(const SensorObj_t * const, SensorData_t * const SensorData);

Sponsored By

What consideration for the interface is most important to you?

10

• Retrieving an error codes
• Making sure that pointers are treated as constants
• The size of the interface
• Naming conventions used in the interface

Sponsored By

Interface Design Considerations

11

• Keep the interface to a dozen or less functions
• Functions should be memorable
• Function names should be descriptive
• Don’t leave out vowels
• Make sure that configurations are const
• Make pointers const
• Separate the application code from the driver

Sponsored By

The Software Stack-up

12

A
p

p
lic

a
ti

o
n

E
xt

e
rn

a
l D

ri
ve

rs
M

C
U

I2C SPI UART ADC GPIO Other

Temp Humidity Accel GPS
IO

Expansion
Pressure

Temp_App
Humidity

_App
Accel_App GPS_App

IO
Expansion_

App

Pressure
_App

Product Application

Sponsored By

Control Interface Dependencies – The Dependency Web

13

A
p

p
lic

a
ti

o
n

E
xt

e
rn

a
l D

ri
ve

rs
M

C
U

I2C SPI UART ADC GPIO Other

Temp Humidity Accel GPS
IO

Expansion
Pressure

Temp_App
Humidity

_App
Accel_App GPS_App

IO
Expansion_

App

Pressure
_App

Product Application

Sponsored By

Control Interface Dependencies – Break Dependency

14

A
p

p
lic

a
ti

o
n

E
xt

e
rn

a
l D

ri
ve

rs
M

C
U

I2C SPI UART ADC GPIO Other

Temp Humidity Accel GPS
IO

Expansion
Pressure

Temp_App
Humidity

_App
Accel_App GPS_App

IO
Expansion_

App

Pressure
_App

Product Application

Sponsored By

Is breaking dependencies and separating concerns worth the effort when
using C?

15

• Yes
• No
• Not sure yet

Sponsored By

The Sensor Interface as an Object

16

An object is a collection of data and operations that can be performed on

that data.

• Sensors are an object

• Keep the object separate from the interface

• Keep the object separate from the implementation

Sponsored By

The Sensor Interface as an Object

17

Function pointers can be used to specify the interface for a sensor!

typedef struct
{

bool (*Init)(const SensorConfig_t * const Config);
bool (*Read)(const SensorObj_t * const, SensorData_t * const SensorData);
bool (*Write)(const SensorObj_t * const, SensorData_t * const SensorData);

} Sensor_t;

Sponsored By

The Sensor as a separate object

18

const Sensor_t Analog =
{

Adc_Init,
Adc_Read,
Adc_Write

};

const Sensor_t Gyro =
{

Gyro_Init,
Gyro_Read,
Gyro_Write

};

Sponsored By

The Sensor type behaves like an object!

19

Analog.Init(AdcConfig);
Analog.Write(… , …);
Analog.Read(… , …);

Gyro.Init(AdcConfig);
Gyro.Write(… , …);
Gyro.Read(… , …);

The trick, is that the sensor has its own custom
behavior but “inherits” the interface that is
defined by the typedef sensor structure!

We can also keep any sensor specific settings
separate in an object structure, so the
implementation does not contain the sensor
information. This allows for multiple sensors of
the same type without collision.

Sponsored By

Thank you for attending

20

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Techniques for Interfacing with Modern Sensors

http://www.beningo.com/
http://bit.ly/1BAHYXm
http://www.beningo.com/

Thank You

Sponsored by

