

Designing Embedded Systems using the ESP32

DAY 1: Introduction to the ESP32 Wi-Fi Module

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.

THE SPEAKER

Jacob Beningo

Visit 'Lecturer Profile'

Beningo Embedded Group - President

Focus: Embedded Software Consulting

An independent consultant who specializes in the design of real-time, microcontroller based embedded software. He has published two books:

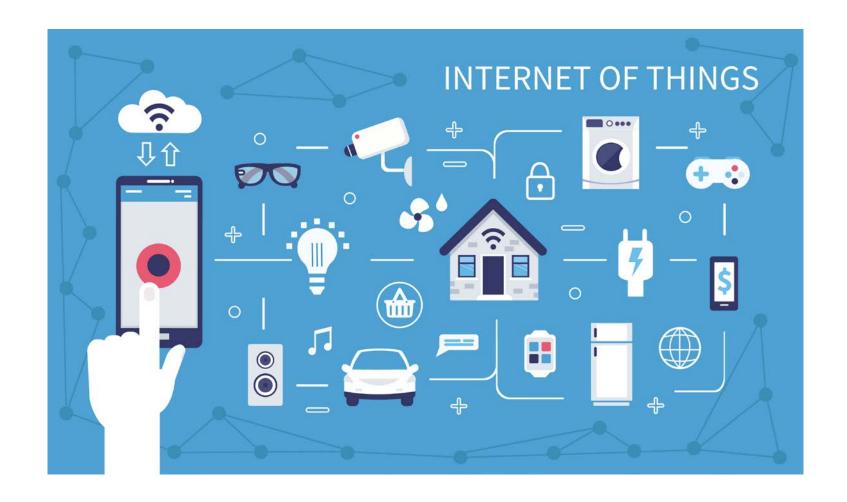
Reusable Firmware Development

- MicroPython Projects

Writes a weekly blog for DesignNews.com focused on embedded system design techniques and challenges.

Visit <u>www.beningo.com</u> to learn more ...

Visit 'Lecturer Profile' in your console for more details.


Course Sessions

- Introduction to the ESP32 Wi-Fi Module
- Setting up and Exploring the SDK
- Programming and Writing the First Application
- It's all about Wi-Fi
- Jump-Starting Cloud Connectivity Applications with Amazon FreeRTOS

Introduction

ESP32 – is a series of low-cost, low-power SoC microcontrollers with integrated Wi-Fi and dual-mode Bluetooth

- Low cost SoC Microcontroller
- Tensilica Xtensa LX6 microprocessor
 - Single and Dual core variants
 - 160 MHz or 240 MHz
- Low-power management
- Large peripheral set
- Internal or external antenna
- Open-source software frameworks

CEC Continuing Education Center

Enough solutions and tools to confuse even the best developers!

CEC Continuing Education Center

ESP32 Modules

ESP32-SOLO Series

The ESP32-SOLO-1 module is based on ESP32-SOWD and has integrated flash memory, thus providing a cost-effective solution for simple Wi-Fi and Bluetooth/Bluetooth LE-based connectivity applications.

ESP32-WROOM Series

These are ESP32-D0WD-based modules with integrated flash. These modules are well suited for Wi-Fi and Bluetooth/Bluetooth LE-based connectivity applications and provide a solid dual-core performance.

ESP32-WROVER Series

The ESP32-WROVER series is based on ESP32-D0WD SoC, having also integrated flash memory and SPIRAM. They have a fine dual-core performance, and are well suited for applications requiring more memory, such as AloT and gateway applications.

ESP32 Modules

Feature List	CPU & Memory			
	Core	Core clock maximum freq.	Flash (MB)	PSRAM (MB)
ESP32-WROOM-32E ESP32-WROOM- 32UE	ESP32-D0WD- V3 Dual Core	240 MHz	4,8,16	N/A
ESP32-WROVER-E ESP32-WROVER-IE	ESP32-D0WD- V3 Dual Core	240 MHz	4,8,16	8
ESP32-MINI-1	ESP32-U4WDH Single Core	160 MHz	4MB Flash packaged in chipset	N/A
ESP32-SOLO-1	ESP32-S0WD Single Core	160 MHz	4	N/A
ESP32-WROOM- 32SE	ESP32-D0WD Dual Core	240 MHz	4,8,16	N/A

ESP32 Common Features

- SD card, UART, SPI, SDIO, I2C, LED PWM, Motor PWM, I2S, IR, pulse counter, GPIO, capacitive touch sensor, ADC, DAC
- Touch Sensor
- 802.11 b/g/n (802.11n up to 150 Mbps), 2.4 GHz*
- Bluetooth V4.2 BR/EDR, Bluetooth LE specification
- 38 pin footprint

ESP32 Module Footprints

18x25.5x3.1

18x19.2x3.2

18x31.4x3.3

18x25.5x3.1

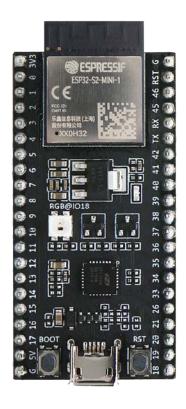
18x31.4x3.3

18x25.5x3.1

13.2×19×2.4

ESP32 Module Costs

Module	Digikey Pricing (Dec 2020)	
ESP32-WROOM-32E (4 MB / 8 MB / 16 MB)	\$2.50 / \$2.80 / \$2.99	
ESP32-WROOM-32UE (4 MB / 8 MB / 16 MB)	\$2.50 / \$2.80 / \$2.99	
ESP32-WROVER-E (4 MB / 8 MB / 16 MB)	\$2.80 / \$2.99 / \$3.28	
ESP32-WROVER-IE (4 MB / 8 MB / 16 MB)	\$2.80 / \$2.99 / \$3.28	
ESP32-MINI-1 (4 MB)	\$2.00	
ESP32-SOLO-1 (4 MB)	\$3.40	
ESP32-WROOM-32SE	Not Currently Available	

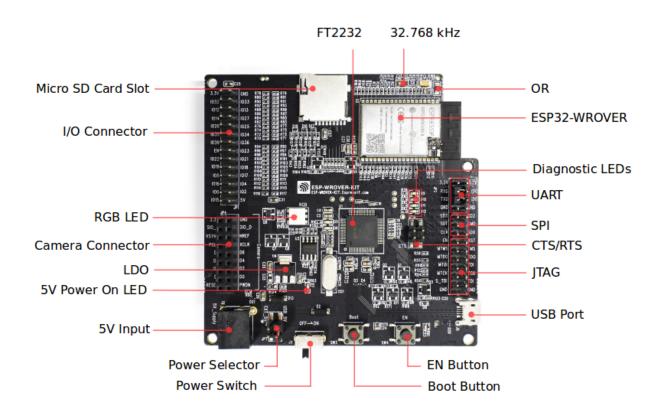


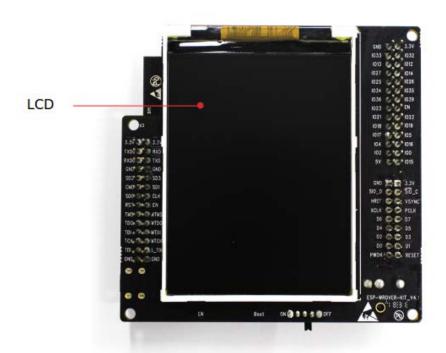
Which module seems the most interesting to you?

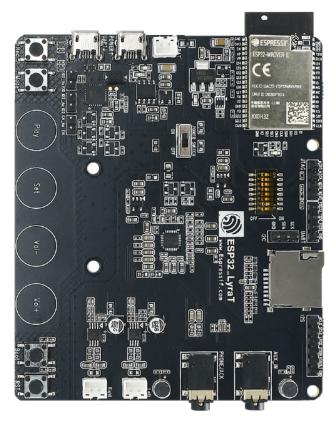
- ESP32-WROOM-32E
- ESP32-WROVER-E
- ESP32-SOLO-1
- ESP32-MINI-1

ESP32-S2-DevKitM-1

ESP32-DevKitC


ESP-WROVER-KIT-VE


- AWS Qualified board
- JTAG Debugging onboard
- USB to Serial Interface
- RGB LED
- SD Card
- Camera connection
- Expansion I/O
- LCD



ESP32-Ethernet-Kit

ESP32-LyraT ESP32-LyraT-Mini

What capabilities are you most interested in for a development board?

- Audio capabilities
- Machine learning
- Ethernet
- Digital signal processing
- Other

Toolchains

- ESP-IDF (IoT Development Framework)
- Amazon FreeRTOS
- Arduino
- MicroPython

Which toolchain are you interesting in using the ESP32 with?

- ESP-IDF
- Amazon FreeRTOS
- Arduino
- MicroPython

Thank you for attending

Please consider the resources below:

- www.beningo.com
 - Blog, White Papers, Courses
 - Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Designing Embedded Systems using the ESP32

DesignNews

Thank You

Sponsored by

