

Raspberry Pi 4 Automation

ALLAN.

DAY 4 : DC Motor Controls

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.
- Submit questions for the lecturer using the Q&A widget. They will follow-up after the lecture portion concludes.

Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

Agenda:

- Basic DC Motor Control Concept
- What is a H-Bridge Driver?
- The L293 H-Bridge IC

Continuing Education

Center

• Lab: A DC Motor Controller

Basic DC Motor Control Concept

A Basic DC Motor Control consists of

- DC power supply.
- A controller
- A DC motor

Basic DC Motor Control Block Diagram

Sponsored By

Basic DC Motor Control Concept...

A simple controller for operating a typical dc motor is a Single Pole-Single Throw switch (SPST).

Typical Switches which can be used as a simple controller

Basic DC Motor Control Concept...

Typical Switches which can be used as a simple controller

Slide SPST Switch

Rocker SPST Switch

Toggle SPST Switch

Question 1

Identify the switch based on the electrical symbol shown in Figure 1.

Figure 1.

Basic DC Motor Control Concept...

A typical circuit schematic diagram of Basic DC Motor Controller

Sponsored By

Digi-Key

Basic DC Motor Control Concept...

To make a controller that is less manual dependent, a desirable automation-based solution can be conceptualized.

Digi-Key

What is a H-Bridge Driver?

Continuing Education

Center

An electronic circuit capable of switch polarity across electromechanical load. A basic method of illustrating the concept of a H-Bridge Driver circuit is using four SPST switches.

What is a H-Bridge Driver?...

By closing the correct switch combinations, the H-Bridge Driver can control the direction of the DC motor.

S1S4 = Forward Direction

S2S3 = Reverse Direction

What is a H-Bridge Driver?...

A solid- state (SS) version can be implemented using Complementary Pairs of PNP and NPN bipolar junction transistors (BJTs).

Source:

https://www.build-electronic-circuits.com/h-bridge/

14

Οov

Sponsored By

What is a H-Bridge Driver?...

Continuing Education

Center

The direction of the DC Motor is controlled by turning on the correct complementary pair of BJTs.

The advantage to using a SS H-Bridge Driver is the ability to control speed and direction of the DC Motor with a microcontroller.

Pulse Width Modulating (PWM) the microcontroller's digital port pins (P1-P4) will provide speed control for the DC Motor.

P1P3 = Forward Direction P2P4 = Reverse Direction

Note: Each BJT transistor will have a base resistor (Rb) to limit current flowing through the semiconductor component.

Concept Circuit Schematic Diagram

The L293 H-Bridge IC

The L293 H-Bridge IC has four SS drivers integrated within its package.

BLOCK DIAGRAM

Source:

https://www.mouser.com/datasheet/2/389/cd00000059-1795435.pdf

The L293 H-Bridge IC...

The L293 H-Bridge IC pinout for small outline (SO) and plastic Dual-Inline-Package (DIP) components

PIN CONNECTIONS (Top view)

Source:

https://www.mouser.com/datasheet/2/389/cd00000059-1795435.pdf

The L293 H-Bridge IC...

The L293 H-Bridge IC electrical specifications.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	36	V
Vss	Logic Supply Voltage	36	v
Vi	Input Voltage	7	V
Ven	Enable Voltage	7	V
l _o	Peak Output Current (100 µs non repetitive)	1.2	Α
Ptot	Total Power Dissipation at Tpins = 90 °C	4	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

Source:

https://www.mouser.com/datasheet/2/389/cd00000059-1795435.pdf

Question 2

Identify the electronic circuit shown in Figure 2.

Lab Project: A DC Motor Controller

Lab Project: A DC Motor Controller Big IDEAS:

- 1. Learners will be able to wire an electronic controller using a few off the shelf components .
- 2. Learners will be able to build a motor speed control device using Physical Computing concepts.
- **3**. Learners will be able to make small changes to the code for personalization.

Lab Project: A DC Motor Controller... A DC Motor Controller Block Diagram

Sponsored By

Digi-Key

Question 3

In reviewing the DC Motor Controller Block Diagram, what is the name of the IC that performs the H-Bridge Motor Driver function?

Lab Project: A DC Motor Controller... Major Components

Sponsored By

Lab Project: A DC Motor Controller...

Electrical Wiring Diagram

Sponsored By

Lab Project: A DC Motor Controller...

Electronic Circuit Schematic Diagram

Question 4

In reviewing the electronic circuit schematic diagram shown on slide 26, which GPIO pin on the GPIO Expansion Shield is responsible for enabling the driver circuit wired to the DC motor?

Lab Project: A DC Motor Controller... Circuit Breadboard Complete

Sponsored By

Lab Project: A DC Motor Controller...

https://youtu.be/9fopAQj8cP0

Lab Project: A DC Motor Controller... Processing Code

31

Lab Project: A DC Motor Controller...

import processing.io.*; 2 int motorPin1 = 17; //connect to the L293D 3 int motorPin2 = 27; 4 int enablePin = 22; 5 **Processing Code...** final int borderSize = 45; //border size 6 7 //MOTOR Object MOTOR motor = new MOTOR (motorPin1, motorPin2, enablePin); 8 ProgressBar mBar: //ProgressBar Object 9 boolean mMouse = false; //determined whether a mouse click the ProgressBar 10 BUTTON btn; //BUTTON Object, For controlling the direction of motor 11 int motorDir = motor.CW: //motor direction 12 13 float rotaSpeed = 0, rotaPosition = 0; //motor speed 14 void setup() { 15 size(640, 360); mBar = new ProgressBar(borderSize, height-borderSize, width-borderSize*2); 16 mBar.setTitle("Duty Cycle"); //set the ProgressBar's title 17 btn = new BUTTON(45, height - 90, 50, 30); //define the button 18 btn.setBgColor(0, 255, 0); //set button color 19 20 btn.setText("CW"); //set button text 21

Lab Project: A DC Motor Controller...

void draw() { 23 background (255): 2425titleAndSiteInfo(): //title and site information strokeWeight(4); //border weight 26 27mBar.create(); //create the ProgressBar **Processing Code...** motor.start(motorDir, (int)(mBar.progress*100)); //control the motor starts to rotate 28 btn.create(): //create the button 29 rotaSpeed = mBar.progress * 0.02 * PI; //virtual fan's rotating speed 30 31 if (motorDir == motor.CW) { 32 rotaPosition += rotaSpeed; if (rotaPosition >= 2*PI) { 33 rotaPosition = 0;34 35 } else { 36 37 rotaPosition -= rotaSpeed; if (rotaPosition <= -2*PI) { 38 rotaPosition = 0;39 40 41 drawFan(rotaPosition); //show the virtual fan in Display window 4232

Sponsored By

Lab Project: A DC Motor Controller...

```
//Draw a clover fan according to the stating angle
44
45
     void drawFan(float angle) {
       constrain(angle, 0, 2*PI);
46
       fill(0);
47
       for (int i=0; i<3; i++) {</pre>
48
         arc(width/2, height/2, 200, 200, 2*i*PI/3+angle, (2*i+0.3)*PI/3+angle, PIE);
49
50
51
       fill(0);
52
       ellipse(width/2, height/2, 30, 30);
       fill(128);
53
       ellipse(width/2, height/2, 15, 15);
54
55
```


Processing Code...

Lab Project: A DC Motor Controller...

Lab Project: A DC Motor Controller...

void mouseReleased() { 73 74 mMouse = false; 75 76 void mouseDragged() { 77 int a = constrain(mouseX, borderSize, width - borderSize); float t = map(a, borderSize, width - borderSize, 0.0, 1.0); 78 if (mMouse) { 79 mBar.setProgress(t); 80 81 -} 82 83 void titleAndSiteInfo() { fill(0); 84 85 textAlign(CENTER); //set the text centered textSize(40); //set text size 86 text("Motor", width / 2, 40); //title -87

Processing Code...

Sponsored By

Lab Project: A DC Motor Controller...

88 textSize(16); 89 text("www.freenove.com", width / 2, height - 20); //site 90 }

Question 5

Continuing Education

Center

Identify the Processing Code line number that displays the developer's website on the virtual simulator control panel.

Thank you for attending

Please consider the resources below:

• The L239 H-Bridge Motor Driver IC Datasheet

https://www.mouser.com/datasheet/2/389/cd00000059-1795435.pdf

Physical Computing

Continuing Education

Center

- O'Sullivan, D., & Igoe, T. (2004). Physical computing: Sensing and controlling the physical world with computers. Boston, MA: Thompson.
- Freenove Ultimate Starter Kit for Raspberry Pi

http://www.freenove.com/tutorial.html

 H-Bridge Driver Circuit <u>https://www.build-electronic-circuits.com/h-bridge/</u>

Thank You

MARIAN.

