Embedded System Design Techniques™

Designing IoT Sensor Nodes using the ESP8266

Session 4: Connecting the ESP8266 to the internet

July 13th, 2017 Jacob Beningo

Presented by:

1

Course Overview

Topics:

- The IoT Architecture
- Getting Started with the ESP8266
- Interfacing Sensors to the ESP8266
- Connecting the ESP8266 to the internet
- Device Management and the Automated Universe

Session Overview

- The WebREPL
- Network Basics
- Configuration of Wi-Fi
- Sockets

DesignNews

Setting Up the WebREPL

import webrepl_setup

>>> import webrepl_setup

WebREPL daemon auto-start status: disabled

```
Would you like to (E)nable or (D)isable it running on boot?
(Empty line to quit)
```

To enable WebREPL, you must set password for it

New password: ******

Confirm password: *******

Changes will be activated after reboot

Would you like to reboot now? (y/n)

5

Setting Up the WebREPL

WebREPL daemon started on ws://<mark>192.168.4.1:8266</mark> Started webrepl in normal mode OSError: [Errno 2] ENOENT

MicroPython v1.9.1-8-g7213e78d on 2017-06-12; ESP module with ESP8266
Type "help()" for more information.
>>>

ESP8266 is now an Access Point!

MicroPython-14cfcf

Setting Up the WebREPL

?	The Wi-Fi a WPA2 pa	network "MicroPython-14cfcf" requires assword.
	Password:	•••••
		 Show password Remember this network
?		Cancel Join

- There are two WiFi interfaces
 - Station Mode (ESP8266 connects to a router)
 - Access Point (Devices connect to the ESP8266).
- Use the REPL to check the interface status as follows:
- You can check if the interfaces are active by:

```
MicroPython v1.9.1-8-g7213e78d on 2017-06-12; ESP module with ESP8266
Type "help()" for more information.
>>> import network
>>> sta_if = network.WLAN(network.STA_IF)
>>> ap_if = network.WLAN(network.AP_IF)
>>> sta_if.active()
False
>>> ap_if.active()
True
>>>
```


8

• Enable station mode and disable the access pt

```
>>> sta_if.active(True)
#5 ets_task(4020ed88, 28, 3fff9648, 10)
>>> ap_if.active(False)
>>> sta_if.active(True)
>>> ap_if.active()
False
>>> sta_if.active()
True
```

• Check the network settings using:

```
>>> ap_if.ifconfig()
('0.0.0.0', '0.0.0', '0.0.0', '208.67.222.222')
```

• The returned values are: IP address, netmask, gateway, DNS.

9

• Connect to your WiFi network:

>>> sta_if.connect('<your ESSID>', '<your password>')

i.e. >>> sta_if.connect('MADSCIE', '12345678')

• To check if the connection is established use:

>>> sta_if.isconnected()
True_

• Verify the IP address:

```
>>> sta_if.ifconfig()
('10.0.0.253', '255.255.0', '10.0.0.2', '10.0.0.2')
```


WebREPL Revisited

$\leftarrow \ \Rightarrow \ \mathbf{C}$	i microp	ython.org/webrepl/		☆	e	e	G	~ @	* *
🚺 Apps 🔺	Bookmarks	EmbeddedNews	Subscriber Downlo	🌃 Qqest Time a	nd Att	:	» 🚞 Oth	er Bookm	arks
ws://192.168.4.	1:8266/ Co	be focused (text curs	sor visible) to accept inp	put. Click on it if	Send a Choose Send to Get a fi Get from (file ope	file No fidevice	le chosen atus)		
10 pasie, pre.	SS CITI + A, I	inen Ciri+v			Prese	nted by:			

11

(>)	network.py ×			
1	import machine			
2	import time			
3	import network			
4				
5	<pre>pin = machine.Pin(2, machine.Pin.OUT)</pre>			
6	6 pin.on()			
7				
8	<pre>8 network_connect()</pre>			
9				
10	while True:			
11				
12	pin.off()			
13	time.sleep(0.5)			
14	$p_{11.01}()$			
15	(Ime.steep(0.5)			
10				
18	def network connect().			
19				
20	<pre>sta if = network.WLAN(network.STA IF)</pre>			
21	if not sta if is connected():			
22	print('Establishing network connection')			
23	sta if.active(True)			
24	<pre>sta if.connect('MyNetwork', 'MyPassword')</pre>			
25	<pre>while not sta_if.isconnected():</pre>			
26	pass			
27	<pre>print('network config:', sta_if.ifconfig())</pre>			

Socket Communication

- A socket represents an endpoint on a network device
- Two sockets are connected together to create a communication channel
- Internet protocols are built on top of sockets, such as email (SMTP), the web (HTTP), telnet, ssh, among many others.

Socket Communication

 Socket module contains the library code for socket communication:

>>> import socket

- Set the server ip address using getaddrinfo:
 >> addr_info = socket.getaddrinfo("myserver", 23)
- Getaddrinfo will return a list of addresses and ports
- Select the desired entry

i.e addr = addr_info[3][6]

Socket Communication - Receive

- Creating the socket connection is easy:
- >>> s = socket.socket()
- >>> s.connect(addr)
- Receive data using a simple loop similar to the following:
- >>> while True:
- ... data = s.recv(10)
- ... print(str(data, 'utf8')'')

Socket Communication - Transmit

```
def http_get(url):
```

```
_, _, host, path = url.split('/', 3)
```

```
addr = socket.getaddrinfo(host, 80)[0][-1]
```

```
s = socket.socket()
```

```
s.connect(addr)
```

s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8')) while True:

```
data = s.recv(100)
```

if data:

```
print(str(data, 'utf8'), end=")
```

else:

break

s.close()

Socket Communication Test

 Make sure that you import the socket module before running this function. Then you can try:

>>> http_get('http://micropython.org/ks/test.html')

17

Additional Resources

- Download Course Material for
 - Python Doxygen Templates
 - Example source code
 - Blog
 - YouTube Videos
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>

From <u>www.beningo.com</u> under

- Blog > CEC – Designing IoT Sensor Nodes using the ESP8266

The Lecturer – Jacob Beningo

Jacob Beningo

Principal Consultant

Social Media / Contact

- : jacob@beningo.com
- : 810-844-1522
- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo

in

DN : Embedded Basics

***ARM** Connected Community

Consulting

- Advising
- Coaching
- Content
- Consulting
- Training

