Embedded System Design Techniques™

Designing IoT Sensor Nodes using the ESP8266

Session 3: Interfacing Sensors to the ESP8266

July 12th, 2017 Jacob Beningo

Course Overview

Topics:

- The IoT Architecture
- Getting Started with the ESP8266
- Interfacing Sensors to the ESP8266
- Connecting the ESP8266 to the internet
- Device Management and the Automated Universe

Session Overview

- The IoT Sensor Node
- BMP280 Barometric Pressure Sensor
- Si7021 Temperature and Humidity Sensor
- DHT(Digital Humidity & Temperature)
- Analog Conversion

The IoT Sensor Node

4

- Environmental sensor containing
 - Temperature Sensing
 - Barometric Pressure Sensor

Presented by:

ROHDE&SCHWARZ

6

Register Name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset	
										state	
temp_xlsb	0xFC	temp_xlsb<7:4>				0	0	0	0	0x00	
temp_lsb	0xFB	temp_lsb<7:0>							0x00		
temp_msb	0xFA	temp_msb<7:0>							0x80		
press_xlsb	0xF9	press_xlsb<7:4>				0	0	0	0	0x00	
press_lsb	0xF8	press_lsb<7:0>								0x00	
press_msb	0xF7	press_msb<7:0>								0x80	
config	0xF5	t_sb[2:0]				filter[2:0]			spi3w_en[0]		
ctrl_meas	0xF4	osrs_t[2:0]				osrs_p[2:0]		mod	mode[1:0]		
status	0xF3	measuring[0] im_update[0]								0x00	
reset	0xE0	reset[7:0]								0x00	
id	0xD0	chip_id[7:0]						0x58			
calib25calib00	0xA10x88	calibration data							individual		

Registers:	Reserved registers	Calibration data	Control registers	Data registers	Status registers	Revision	Reset
Туре:	do not write	read only	read / write	read only	read only	read only	write only

Use case	Mode	Over- sampling setting	osrs_p	osrs_t	IIR filter coeff. (see 3.3.3)	Timing	ODR [Hz] (see 3.8.2)	BW [Hz] (see 3.3.3)
handheld device low-power (e.g. Android)	Normal	Ultra high resolution	×16	×2	4	t _{standbv} = 62.5 ms	10.0	0.92
handheld device dynamic (e.g. Android)	Normal	Standard resolution	×4	×1	16	t _{standby} = 0.5 ms	83.3	1.75
Weather monitoring (lowest power)	Forced	Ultra low power	×1	×1	Off	1/min	1/60	full
Elevator / floor change detection	Normal	Standard resolution	×4	×1	4	t _{standby} = 125 ms	7.3	0.67
Drop detection	Normal	Low power	×2	×1	Off	t _{standbv} = 0.5 ms	125	full
Indoor navigation	Normal	Ultra high resolution	×16	×2	16	t _{standby} = 0.5 ms	26.3	0.55

Presented by:

8

Micro Python I2C

from machine import I2C

i2c = I2C(-1, machine.Pin(5), machine.Pin(4), freq=400000)

data = i2c.readfrom_mem(119, 0xD0, 1)
print(data)

>>>b 'X'

X is 0x58!

9

Micro Python Script Example

The Si7021

- Environmental sensor containing
 - Temperature Sensing
 - Humidity Sensor

The Si7021

12

The SI7021

DHT (Digital Humidity & Temperature)

- DHT sensors are low cost digital sensors with capacitive humidity sensors and thermistors to measure the surrounding air.
- They feature a chip that handles analog to digital conversion and provide a 1-wire interface.

14

DHT 1-Wire Python Script

15

Analog UV 1918 Sensor

- Environmental Sensor
 - Analog
 - UV signal
 - UV Index = V / 0.1

Analog UV 1918 Sensor

17

ADC Python Script

Additional Resources

- Download Course Material for
 - Python Doxygen Templates
 - Example source code
 - Blog
 - YouTube Videos
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>

STUDY STUDY STUDY

From <u>www.beningo.com</u> under

- Blog > CEC – Designing IoT Sensor Nodes using the ESP8266

The Lecturer – Jacob Beningo

Jacob Beningo

Principal Consultant

Social Media / Contact

- : jacob@beningo.com
- : 810-844-1522
- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo

in

DN : Embedded Basics

***ARM** Connected Community

Consulting

- Advising
- Coaching
- Content
- Consulting
- Training

