Embedded System Design Techniques™

From Baremetal to RTOS

Session 2: Getting Started using Real-time Operating Systems

April 11th, 2017 Jacob Beningo

© 2017 Jacob Beningo All Rights Reserved

Course Overview

Objective:

Transitioning to using real-time operating systems

Topics:

- Reviewing Baremetal Scheduling
- Getting Started using RTOSes
- Real-Time Operating System Concepts
- Debugging Real-time Embedded Systems
- RTOS Best Practices

2

Session Overview

- Introduction
- Task Concurrency
- RTOS Characteristics
- Baremetal or RTOS?
- Task Fundamentals

3

- Examples
- RMA

Presented by:

Task Concurrency

Sequential Tasks
 Concurrent Tasks

DesignNews

4

© 2017 Jacob Beningo All Rights Reserved

RTOS Characteristics

A **Real-Time Operating System (RTOS)** is an operating system designed to manage hardware resources of an embedded system with very precise timing and a high degree of reliability.

Baremetal or RTOS?

- 7 Reasons to choose an RTOS
 - Concurrency
 - Pre-emption
 - Available RAM
 - Available flash
 - Synchronization tools

6

- 3rd party software
- Ease of use

"Of course we can make fast decisions ... once we have considered the 4872 factors."

DesignNews

© 2017 Jacob Beningo All Rights Reserved

Hardware Overview

- NXP K64F Freedom Board
 - ARM Cortex-M4
 - 120 MHz
 - 1 MB Flash
 - 256 KB RAM
 - Tri-Color LED
 - Accelerometer
 - Built-in Debugger
 - Ethernet
 - \$35

DesignNews

7

FreeRTOS

• FreeRTOS.org

- Ports and source available

YouTube Demonstrations

https://www.youtube.com/channel/UC9k8GahBTE0IVJxOsL4WhOA

Home Videos Playlists Channels Discussion About ${\mathbb Q}$	
Share your thoughts	
All activities 🔻	
Jacob Beningo uploaded a video 8 months ago FreeRTOS Setup with TrueStudio and NXP K64F Freedom Board Jacob Beningo Bonnths ago • 692 views Step by step instructions on how to setup FreeRTOS using Atollic TrueStudio Board	d dio and a NXP K64F
Jacob Beningo uploaded a video 9 months ago Setting up Statistical Profiling in Atollic TrueSTUDIO Jacob Beningo 9 months ago • 237 views Here is the step by step process to setup a statistical profiler for your emb use a the SWM within TrueSTUDIO	edded software

DesignNews

9

The Task Control Block (TCB)

DesignNews

10

© 2017 Jacob Beningo All Rights Reserved

• Creating a task in FreeRTOS

xTaskCreate(

0,

1,

0);

Led_BlueBlink,

(const char* const)"led_blue",
configMINIMAL_STACK_SIZE,

/* Task Pointer */ /* Task Name */ /* Steel: Death */

/* Stack Depth */

/* Parameters to Pass to task */

/* Task Priority */

/* Pass handle to created task */

11

Example

```
128 /*lint -save -e970 Disable MISRA rule (6.3) checking. */
129 int main(void)
130 /*lint -restore Enable MISRA rule (6.3) checking. */
131 {
132
       /* Write your local variable definition here */
133
134
       /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE !!! ***/
135
       PE low level init();
       /*** End of Processor Expert internal initialization.
                                                                                  ***/
136
137
       /* Write your code here */
138
       /* For example: for(...) J l */
139
       xTaskCreate(Led_GreenBlink,
                                                  /* Task Pointer */
140
                  (const char* const)"led green",/* Task Name */
141
                  configMINIMAL_STACK_SIZE,
142
                                                  /* Stack Depth */
143
                  0,
                                                  /* Parameters to pass to task*/
144
                                                  /* Task Priority */
                  з,
                                                  /* Pass handle to created task */
145
                  0);
146
                                                  /* Task Pointer */
       xTaskCreate(Led RedBlink,
147
                  (const char* const)"led red",
                                                  /* Task Name */
148
                  configMINIMAL_STACK_SIZE,
                                                  /* Stack Depth */
149
150
                  0,
                                                  /* Parameters to pass to task*/
                                                  /* Task Priority */
151
                  2,
152
                                                  /* Pass handle to created task */
                  0);
153
       xTaskCreate(Led BlueBlink,
                                                  /* Task Pointer */
154
                  (const char* const)"led blue", /* Task Name */
155
                  configMINIMAL_STACK_SIZE,
156
                                                  /* Stack Depth */
                                                  /* Parameters to pass to task*/
157
                  0,
158
                                                  /* Task Priority */
                  1,
159
                                                  /* Pass handle to created task */
                  0);
```

Presented by:

CONTINUING

Example

Context Switching

DesignNews

14

© 2017 Jacob Beningo All Rights Reserved

Task States

Rate Monotonic Analysis

Method for setting initial task priorities

Assumptions:

- Tasks are periodic
- Tasks are independent
- Preemptive scheduling is used

DesignNews

16

© 2017 Jacob Beningo All Rights Reserved

Rate Monotonic Analysis

• CPU Utilization (U)

$$\sum_{k=1}^{n} \frac{E_k}{T_k} \le n\left(2^{\frac{1}{n}} - 1\right)$$

U(1) = 1.0 U(2) = 0.828 U(3) = 0.779 U(4) = 0.756 U(5) = 0.743 U(6) = 0.734 $U(\infty) = 0.693$

DesignNews

17

© 2017 Jacob Beningo All Rights Reserved

Rate Monotonic Analysis

	Execution	Period	Utilization
Task 1	15	100	0.15
Task 2	30	150	0.20
Task 3	60	300	0.20

Total Utilization = 0.15 + 0.20 + 0.20 = **0.52**

$0.52 \le U(3)$ $0.52 \le 0.779$

DesignNews

18

© 2017 Jacob Beningo All Rights Reserved

Additional Resources

- Download Course Material for
 - Updated C Doxygen Templates (Dec 2016)
 - Example source code
 - Templates
 - YouTube Videos
- Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm

From <u>www.beningo.com</u> under

- Blog > CEC – Baremetal to RTOS

DesignNews

19

© 2017 Jacob Beningo All Rights Reserved

The Lecturer – Jacob Beningo

Jacob Beningo

Principal Consultant

Social Media / Contact

- : jacob@beningo.com
- : 248-719-6850

Τ

in

- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo
- **EDN : Embedded Basics**

CONSULTING

- Secure Bootloaders
- Code Reviews
- Architecture Design
- Real-time Software
- Expert Firmware Analysis

Embedded Workshops

- Bootloader Design
- RTOS Workshop
- Design Acceleration

www.beningo.com

DesignNews

20

© 2017 Jacob Beningo All Rights Reserved

