Hands On With ROS

Class 4: Angle Control with ROS

March 26, 2020 Don Wilcher

Presented by:

Class 4: Angle Control with ROS

Agenda

Diving into the ROS Topic

2

- Servo Motor Control Applications
 - a) Sweep Control
 - b) Knob Control
- Lab Project: Servo Motor Control with ROS

Diving into the ROS Topic

Definition:

Topic – The publishing and subscribing of a message of a specific name type.

Explanation:

Topics are:

- a) communication defined buses which allow the exchange of messages.
- b) unknown public/subscribe words.
- c) relevant to the subscribing of data of interested nodes.

ROS.(n.d.). Understanding ros topics. Retrieved from http://wiki.ros.org/Topics

Example:

Turtlesim simulator

Type and run the following commands in different terminal windows after the \$ prompt.

roscore

rosrun turtlesim turtlesim_node rosrun turtlesim turtle_teleop

roscore

roscore http://mrdon-desktop:11311/ 80 File Edit View Search Terminal Help Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://mrdon-desktop:45011/ ros comm version 1.14.3 SUMMARY _____ PARAMETERS * /rosdistro: melodic * /rosversion: 1.14.3 NODES auto-starting new master process[master]: started with pid [2189] ROS MASTER URI=http://mrdon-desktop:11311/ setting /run id to 278d8758-634e-11ea-881e-b827eb9a7583 process[rosout-1]: started with pid [2200] started core service [/rosout]

Presented by:

CONTINUING

Question 1

Name the virtual simulation example used to demonstrate Topics?

DD5 to-starting new master consequations: started with gid [2024] 5_MSTB2_URL=http://mdon-desktop:i1313/ tting/run_id= 0.24dedBas=478-1180-0758-bB278bBa7583 occss[rosout-1]: started with pid [2035] arted core service (/rosout)

rosrun_turtlesim turtlesim_node

Presented by:

CONTINUING

Result of : rosrun_turtlesim turtlesim_node

CONTINUING EDUCATION

rosrun_turtlesim turtle_teleop_key

Question 2

What method is used to move the turtle on the turtlesim window?

nots to-starting new master cossignater): started with pid [2024] 5.JMSTER_UBI-http://nodo-esktog:1131/ 5.JMSTER_UBI-http://nodo-esktog:1131/ cossificacioni-11: started with pid [2035] arted core service (/rcsuuf)

Result of: rosrun_turtlesim turtle_teleop_key

> CONTINUING EDUCATION

to-starting new master orass[master]: started with pid [2024] S_MASTER_UR1=http://nrdon-desktop:11311/ titing //nn (do 12dedBas=4478-1140-97583-b827858a783 orass[rosout-1]: started with pid [2035] arted room serving (fromula

۲	mrdo	n@mr	don-des	ktop: ~							_			● • •
File	Edit	View	Search	Terminal	Help									
[W.	ARN]	[1583	903708	.34154227	76]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.274624])	<u>^</u>
[W.	ARN]	[1583	903708	.35763508	38]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.244988])	
[W.	ARN]	[1583	903708	.37351165	57]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.215352])	
[W.	ARN]	[1583	903708	.38918031	17]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.185716])	
[W	ARN]	[1583	903708	.40491517	73]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.156080])	
[W.	ARN]	[1583	903708	.42170983	35]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.126444])	
[W	ARN]	[1583	903708	.43772317	70]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.096808])	
[W	ARN]	[1583	903708	.45332433	33]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.067172])	
[W	ARN]	[1583	903708	.46963588	37]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.037537])	
[W	ARN]	[1583	903708	.48521955	50]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=2.007901])	
[W	ARN]	[1583	903708	.50099732	21]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.978265])	
[W	ARN]	[1583	903708	.51689305	56]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.948629])	
[W	ARN]	[1583	903708	.53385755	56]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.918993])	
[W	ARN]	[1583	903708	.54960329	97]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.889357])	
[W	ARN]	[1583	903708	.56546705	54]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.859721])	
[W	ARN]	[1583	903708	.58136289	94]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.830085])	
[W	ARN]	[1583	903708	.59705697	70]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.800449])	
[W	ARN]	[1583	903708	.61279234	16]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.770813])	
[W	ARN]	[1583	903708	.62943649	€2]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.741177])	
[W	ARN]	[1583	903708	.64505755	50]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.711541])	
[W	ARN]	[1583	903708	.66105427	72]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.681906])	
[W	ARN]	[1583	903708	.67682985	55]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.652270])	
[W	ARN]	[1583	903708	.69370097	72]: Oh	no!	I hit	the	wall!	(Clamping	from	[x=-0.012071,	y=1.622634])	
[W	ARN1	[1583	903708	.70947442	201: Oh	no!	I hit	the	wall!	(Clamping	from	[x = -0.012071]	v=1.5929981)	~

Result of turtle hitting wall

Diving into a ROS Topics... Conclusion

- The turtlesim simulator illustrates the turtlesim_node and the turtle_teleop_key communications between nodes.
- The turtle_teleop_key is publishing the key strokes based on a topic.
- The turtlesim node subscribes to the same topic as turtle_teleop_key.
- The turtle1/command_velocity is the shared topic between the nodes.

Model can be displayed using a rostopic dynamic graph command: \$rosrun rqt_graph rqt_graph

Presented by:

Question 3

Which command is used to display the rostopic dynamic graph?

- a) \$rosrun rqt_graph rqt_graph
- b) \$roscore rqt_graph rqt_graph
- c) \$rosrun rqt_graph
- d) None of the above

Servo Motor Control Applications... Sweep Control: Arduino Uno Code

File > Examples > Servo > Sweep

Presented by:

Servo Motor Control Applications... Sweep Control

Sweep Control Electrical Wiring Diagram

Servo Motor Control Applications... Knob Control Arduino Uno Code

#include <Servo.h>

```
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup() {
  myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop() {
  val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
  val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)
  myservo.write(val); // sets the servo position according to the scaled value
  delay(15); // waits for the servo to get there
```

File > Examples > Servo > Knob

Servo Motor Control Applications... Knob Control

DesignNews

23

Knob Control Electrical Wiring Diagram

Wilcher, D. (2019). ROS 101: An intro to the robot operating system. Retrieved from <u>https://www.designnews.com/gadget-freak/ros-101-intro-robot-operating-system/107053141061075</u> Presented by:

Lab Project: Servo Motor Control with ROS

Presented by:

CONTINUING

Lab Project: Servo Motor Control with ROS...

Lab Objectives:

- Learn how attach a Raspberry Pi to an Arduino.
- Learn how to communicate with a ROS node.
- Learn how to display the dynamic graph of the servo rostopic.
- Learn how to control a servo motor using the rostopic pub echo command.

Serial communication between the Raspberry Pi 3 and Arduino Uno

How to attach a Raspberry Pi to an Arduino?

Open a linux terminal: At the prompt type: roscore.

Question 4

Name two control methods to operate a servo motor.

How to attach a Raspberry Pi to an Arduino?...

New Ctrl+N Open Ctrl+O Open Recent	>	ADC	ros_lib: Upload the		
Sketchbook	Built-in Examples	Blink	ServoControl Sketch		
Close Ctrl+W Save Ctrl+S Save As Ctrl+Shi Page Setup Ctrl+Shi Print Ctrl+P	01.Basics 02.Digital t+S 03.Analog 04.Communication 05.Control 06.Sensors	BlinkerWithClass BlinkM button_example Clapper Esp8266HelloWorld HelloWorld IrRanger			
Preferences Ctrl+Co	nma 07.Display 08 Strings	Logging			
Quit Ctrl+Q 15 by David A. Mell 16 modified 30 Aug 17 by Tom Igoe 18 <	08.Strings 09.USB 10.StarterKit_BasicKit 11.ArduinoISP Examples for any board Adafruit Circuit Playground Bridge Ethernet Firmata	Odom pubsub ServiceClient ServiceServer ServoControl TcpBlink TcpHelloWorld Temperature TimeTF	ros_lib: The <i>ServoControl</i> Sketch provides the rostopic for		

Presented by:

CONTINUING EDUCATION

How to display a dynamic graph of the servo rostopic?...

mrdon@mrdon-desktop: ~ File Edit View Search Terminal Help mrdon@mrdon-desktop:~\$ sudo apt-get install ros-melodic-rqt [sudo] password for mrdon: Reading package lists... Done Building dependency tree Reading state information... Done The following packages were automatically installed and are no longer required: apt-clone archdetect-deb cryptsetup-bin dpkg-repack gir1.2-json-1.0 gir1.2-nm-1.0 gir1.2-nma-1.0 gir1.2-timezonemap-1.0 gir1.2-xkl-1.0 grub-common libdebian-installer4 libpng12-0 libtimezonemap-data libtimezonemap1 os-prober python3-icu python3-pam rdate Use 'sudo apt autoremove' to remove them. The following NEW packages will be installed: ros-melodic-rqt 0 upgraded, 1 newly installed, 0 to remove and 31 not upgraded. Need to get 2,232 B of archives. After this operation, 14.3 kB of additional disk space will be used. Err:1 http://packages.ros.org/ros/ubuntu bionic/main arm64 ros-melodic-rqt arm64 0.5.0-0bionic.20190602.130423 404 Not Found [IP: 2600:3402:200:227::2 80] E: Failed to fetch http://packages.ros.org/ros/ubuntu/pool/main/r/ros-melodic-rq t/ros-melodic-rqt 0.5.0-0bionic.20190602.130423 arm64.deb 404 Not Found [IP: 2 600:3402:200:227::2 80] E: Unable to fetch some archives, maybe run apt-get update or try with --fix-mis sing?

Installing *rqt*

Presented by:

CONTINUING

How to display a dynamic graph of the servo rostopic?...

How to display a dynamic graph of the servo rostopic?...

• rqt_graphRosGraph - rqt 🛛 🔍 🔿 🔿 😒
₽Node Graph D♥ - C
C Nodes/Topics (active) ‡ / / 📔 🗵 🔳
Group: 2 🗘 Namespaces 🗹 Actions 🗹 tf 🗹 Images 🛛 Highlight 🗹 Fit 🔟
Hide: 🗹 Dead sinks 🗹 Leaf topics 🗹 Debug 🗌 tf 🗹 Unreachable 🗹 Params
/rostopic_3522_1584074055077 /servo /serial_node

servo rqt_graph

How to communicate with a ROS node?

To run the rosserial client application for communicating with the attached Arduino Uno, open a new window and type the following *ros_lib* command after the prompt.

\$ rosrun rosserial_python serial_node.py /dev/serial port.

Note: *serial port* is the communication port used on the Arduino Uno to talk to the Raspberry Pi.

For example: ttyACM0 is the Arduino Uno's serial port to communicate with the Raspberry Pi.

How to communicate with a ROS node?...

Index tangging a subject of the series range it clds. The classing left fill the series range it clds. The range of the series range it clds. The range of the series range it clds. Series a series range of the series range

Open linux terminal: rosrun rosseri_python running

How to operate servo motor with rostopic pub?

To operate the servo motor with rostopic pub, open a new window and type the following ros_lib command after the prompt.

\$ rostopic pub servo std_msgs/UInt16 <angle>.

Note. <angle> is equal to 0 -180.

How to operate a servo motor with rostopic pub?

Servo Motor Rotational Control

\$rostopic pub servo std_msgs/UInt16 180

\$rostopic pub servo std_msgs/UInt16 90

\$rostopic pub servo std_msgs/UInt16 0

How to operate servo motor with rostopic pub?

Question 5 What rostopic pub command is used to operate a servo motor?

