Getting Started with Secure Software

Class 2: Performing a Security Threats Analysis

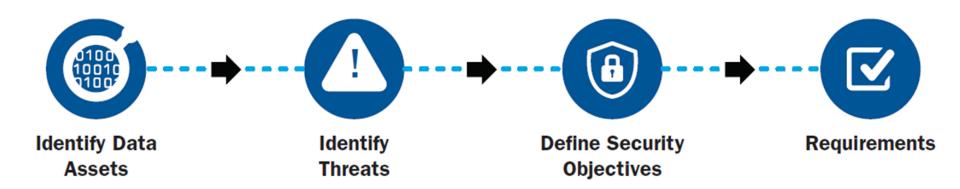
April 21, 2020 Jacob Beningo

Presented by:

Course Overview

Topics:

- Introduction to Platform Security Architecture (PSA)
- Performing a Security Threats Analysis
- Architecting a Secure Solution
- Secure Boot and the Root-of-Trust
- Secure Frameworks and Ecosystems


Session Overview

- Threat Based Analysis Overview
- Threat Analysis Steps
- Protecting Data Assets

Threat Based Analysis

The Process

Threat Based Analysis

A Networked Camera

- Used to stream live video to a remote location
- May be used to periodically capture still images or be activated by detected motion
- Video stream is transmitted in a compressed form
- May be used for:
 - Personal use (baby monitors, doorbells, security, etc
 - Enterprise general use (security, event detection)
 - Enterprise high security use (protect high value assets)

Step #1 – Identifying Data Assets

Data assets that exist in nearly all IoT devices include:

- The firmware
- Unique ID
- Passwords (flash, users, etc)
- Encryption keys (to control device, secure communication, etc)

Device specific data assets might include:

6

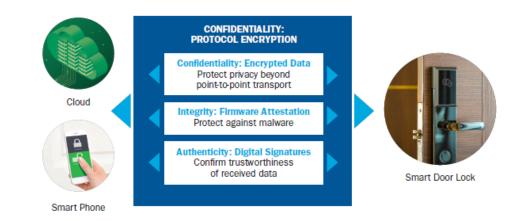
- Image data
- Sensor data
- Control data

DesignNews

Step #1 – Identifying Data Assets

Data assets that exist in a Networked Camera:

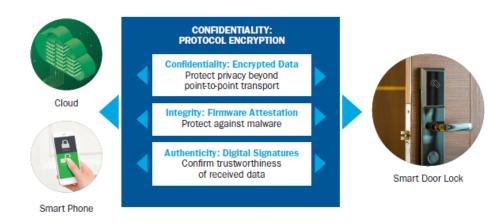
Data Asset	Description
Camera Id	A unique identifier for the device
Firmware	Defines how the hardware operates
Firmware Credentials	Used for secure boot
Credentials	Data used for cryptographic operations
Logs	Historic data
Images	Data captured by the camera and sent over the network
Configuration	Data used for configuration, including network configuration



Protecting Data Assets

Confidentiality - the state of keeping or being kept secret or private.

- requires that only authorized people can read the data asset.
- it is kept secret or private
- Data assets that require confidentiality include:
 - Passwords
 - Personal data generated by the IoT device
 - Heart rate
 - Location data



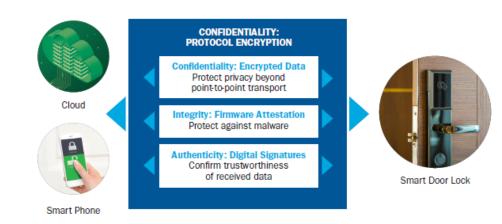
Protecting Data Assets

Integrity – the state of being whole and undivided.

- requires that a data asset remains unchanged through its use or transferal.
- Data assets that require integrity include:
 - Boot firmware (ensures that the MCU initializes to a known initial state)
 - Device configuration
 - Credentials
 - Firmware
 - etc

Presented by:

CIJI-KEJ


Protecting Data Assets

Authenticity – the quality of being authentic (undisputed origin; not a copy, genuine)

- Requires that only a trusted actor has established the current state of a data asset
- Example data assets requiring authenticity include:
 - Firmware images

Combining integrity and authenticity establishes trust!

- Digital signature can be used to evaluate and integrity of new firmware
- Digital signature can be used to evaluate and integrity of existing firmware

Step #1 – Identifying Data Assets

Data assets that exist in a Networked Camera:

Data Asset	Confidentiality	Integrity	Authentication
Camera Id		\checkmark	
Firmware	\checkmark	\checkmark	\checkmark
Firmware Credentials		\checkmark	
Credentials	\checkmark	\checkmark	
Logs		\checkmark	
Images	\checkmark	\checkmark	
Configuration	\checkmark	\checkmark	

Step #2 – Identify Threats

Threat	Targeted Data Asset	Confidentiality	Integrity	Authentication
Impersonation	Credentials	\checkmark	\checkmark	
Man in the Middle	Credentials Images Configuration Confidentiality	\checkmark	\checkmark	\checkmark
Firmware Abuse	Firmware	\checkmark	\checkmark	\checkmark
Tamper	Camera ID Firmware Credentials Logs Images Configuration	√ √ √ √	$ \begin{array}{c} \checkmark \\ \checkmark $	\checkmark

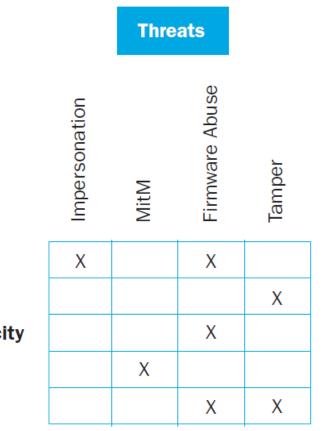
Step #3 – Identify Security Objectives

Access Control - The IoT device authenticates all actors (human or machine) attempting to access data assets. Prevents unauthorized access to data assets. Counters spoofing and malware threats where the attacker modifies firmware or installs an outdated flawed version.

Secure Storage - The IoT device maintains confidentiality (as required) and integrity of data assets. Counters tamper threats.

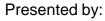
Firmware Authenticity - The IoT device verifies firmware authenticity prior to boot and prior to upgrade. Counters malware threats.

Communication - The IoT device authenticates remote servers and provides confidentiality (as required) and maintains integrity of exchanged data. Counters Man in the Middle (MitM) threats.


Secure State - Ensures that the device maintains a secure state even in case of failure of verification of firmware integrity and

authenticity. Counters malware and tamper threats.

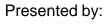
DesignNews



Step #3 – Identify Security Objectives

Security Objectives

Access Control Secure Storage Firmware Authenticity Communication Secure State



Step #4 – Defining Requirements

Security Objective	Countered Threats	Targeted Data Assets	Security Properties ²	Design	Mfg	Inventory	End Use	Term
Access Control ¹	Spoofing Malware	Configuration T. Firmware	C I, A	N/A Dig Sign	N/A Dig Sign	N/A N/A	Encryption Dig Sign	Dead⁴ Dead⁴
Secure Storage ¹	Tamper	HW ID T. Firmware User Data Configuration Keys	 , A C, C C,	N/A Dig Sign N/A N/A N/A	eFuse Dig Sign N/A N/A SEF ³	eFuse Dig Sign N/A N/A SEF ³	eFuse Dig Sign Encryption Encryption SEF ³	eFuse Dead ⁴ Dead ⁴ Dead ⁴ Dead ⁴
Firmware Auth	Malware	T. Firmware	I, A	Dig Sign	Dig Sign	Dig Sign	Dig Sign	Dead⁴
Comm ¹	MitM	User Data Keys	C, I C, I	N/A N/A	N/A SEF ³	N/A SEF ³	Encryption SEF ³	Dead⁴ Dead⁴
Secure State	Malware Tamper	T. Firmware HW ID T. Firmware User Data Configuration Keys	 , A , A C, I C C, I	Dig Sign N/A Dig Sign N/A N/A N/A	Dig Sign eFuse Dig Sign N/A N/A SEF ³	Dig Sign eFuse Dig Sign Encryption Encryption SEF ³	Dig Sign eFuse Dig Sign Encryption Encryption SEF ³	Dead ⁴ eFuse Dead ⁴ Dead ⁴ Dead ⁴ Dead ⁴

Step #5 – Leverage the Requirements

PSA

Select a Secure Microcontroller

Secure MCU Features

- Encryption
- **Digital signature**
- eFuses
- Isolated execution environment for trusted applications
- Secure element functionality

Additional Resources

• <u>Beningo.com</u>

- Blog, White Papers, Courses
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>
- Platform Security Architecture:
 - www.arm.com/psa
- Threat-based analysis method:
 - <u>www.cypress.com/psoc6security</u>

From <u>www.beningo.com</u> under

- Blog > CEC – Getting Started with Secure Software

Presented by:

