Designing and Launching an Embedded Product

Class 4: Achieving Quality and Reasonable Time-to-Market

November 21, 2019 Jacob Beningo

Course Overview

Topics:

- The Business of Product Development
- Success through Design and Development Processes
- Scalability, Architectures and the MVP
- Achieving Quality and Reasonable Time to Market
- Techniques for Accelerating Time to Market

Session Overview

- Balancing Development
- Software Quality
- Managing Quality

Balancing Development

Presented by:

Balancing Development

Example Inputs:

Quality – High

Time – Short

Results:

Cost - High

Quality is completely subjective

- How does FatFS rank?
- How does FreeRTOS rank?
- How does silicon vendor code rank?
- Commercial code?

Define what quality is to you:

- Adhering to Industry Best Practices
- Minimizing Cyclomatic Complexity
- Compilation with No Warnings
- Code Testing Coverage
- Code Verification

Software Development Life Cycle (SLDC)

- Definitions
- SDLC Activities
- Documentation
- Standards and Conventions
- Maintenance
- Software Metrics
- Verification

Synergy Software Quality Handbook

Renesas Synergy™ Platform Synergy Software Software Quality Assurance

Cyclomatic Complexity

Cyclomatic Complexity (McCabe Complexity) defines the number of linearly independent paths in a function of code.

```
~~ File Functional Summary ~~
```

```
File Function Count...:
Total Function LOC....:
                                 35 Total Function Pts LOC :
                                                                     0.5
Total Function eLOC....:
                                 17 Total Function Pts eLOC:
                                                                     0.3
                                 14 Total Function Pts 1LOC:
Total Function 1LOC....:
                                                                     0.2
                                  7 Total Function Return .:
Total Function Params .:
                                  8 Total Function Complex.:
Total Cyclo Complexity :
                                                                      20
Max Function LOC .....:
                                 21 Average Function LOC ...:
                                                                    7.00
Max Function eLOC ....:
                                                                    3.40
                                 11 Average Function eLOC .:
Max Function 1LOC ....:
                                  8 Average Function 1LOC .:
                                                                    2.80
Max Function Parameters:
                                  2 Avg Function Parameters:
                                                                    1.40
Max Function Returns ...:
                                  1 Avg Function Returns ..:
                                                                    1.00
Max Interface Complex. :
                                  3 Avg Interface Complex. :
                                                                    2.40
                                  4 Avg Cyclomatic Complex.:
Max Cyclomatic Complex.:
                                                                    1.60
Max Total Complexity ..:
                                  6 Avg Total Complexity ...:
                                                                     4.00
```

End of File: C:\SPO2 Module\Common\drivers\src\pwm.c

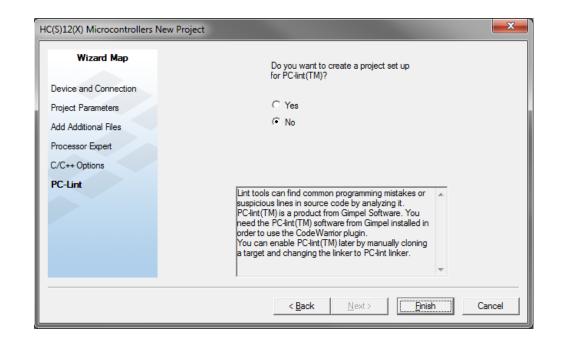
Cyclomatic Complexity

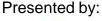
Higher code complexity increases debugging effort and decreases code reliability

Complexity	Reliability Risk
1 – 10	A simple function, little risk
11 – 20	More complex moderate risk
21 - 50	Complex, high risk
51+	Untestable, very high risk

Higher code complexity increases risk of injecting new bugs into code!

Complexity	Risk of injecting a bug when making a change
1 – 10	5%
11 – 20	20%
21 - 50	40%
51+	60%




Code Analysis

Ways to Perform Code Analysis

- Complexity Measurements
- Lines of Code
- Comment Density
- Assertion Density
- Static Code Analysis
- Dynamic Code Analysis
- Worst Case Stack Usage
- Automated Tools
 - (i.e. Code Standard Compliance)

Automated Tests

Benefits:

- Simplify regression testing
- Run tests on build server
- Easily identify when a test fails (and what caused it)
- Monitor code coverage
- Automated reporting

Test Harnesses

```
TEST(DRV TIMER TG1, TC 1 1 OpenSuccess) PASS
TEST(DRV TIMER TG1, TC 1 2 OpenHdl) PASS
TEST(DRV TIMER TG1, TC 1 3 OpenCallbackParameter) PASS
TEST(DRV_TIMER_TG1, TC 1 4 OpenConfigIsNull) PASS
TEST(DRV_TIMER_TG1, TC_1_5_OpenConfigChannelOutOfRange) PASS
TEST(DRV TIMER TG1, TC 1 6 OpenOneShot) PASS
TEST(DRV TIMER TG1, TC 1 10 OpenTwice) PASS
TEST (DRV TIMER TG1, TC 1 11 OpenCallbackIRQNotAvailable) PASS
TEST (DRV TIMER TG1, TC 1 12 OpenPeriodTooLarge) PASS
TEST(DRV TIMER TG1, TC 1 13 MultipleChannels) PASS
TEST(DRV TIMER TG2, TC 2 1 NullPointers) PASS
TEST(DRV TIMER TG2, TC 2 2 StartStopClear) PASS
TEST(DRV TIMER TG2, TC 2 3 SetGetDelay) PASS
TEST(DRV TIMER TG2, TC 2 4 GetVersion) PASS
TEST(DRV TIMER TG2, TC 2 5 ControlNotOpen) PASS
TEST(DRV_TIMER_TG2, TC_2_6_infoGet) PASS
TEST(DRV_TIMER_TG3, TC_3_1_CloseSuccess) PASS
TEST(DRV TIMER TG3, TC 3 2 CloseHdl) PASS
TEST(DRV TIMER TG3, TC 3 3 CloseNotOpen) PASS
```

36 Tests O Failures O Ignored 36 Pass

Continuous Integration

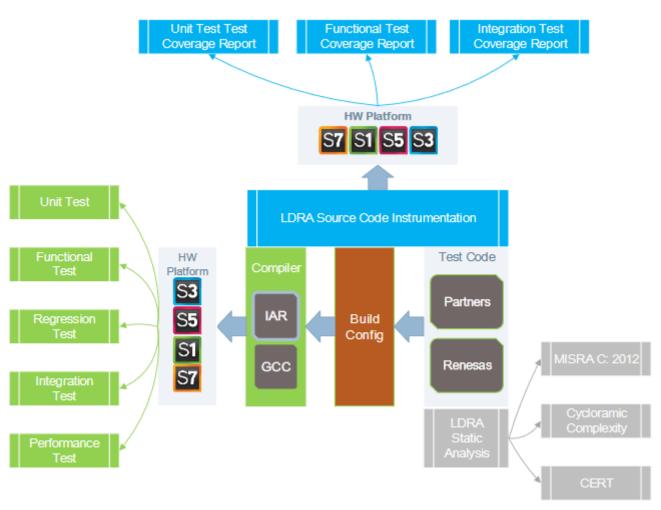


Image Source: Renesas Synergy Quality Manual

Presented by:

Automated Reporting

	Synergy Software Package Quality Matrices								ility	Data	1		Functional	Test	Software Unit Tests											Verification Index Score					
TestID	SSP Modules Name	Quality Index	Clean Build Index	Coverage Index	Complexity Index 1	Coding Standard Index 2	Verification Index	Test Coverage (statement/Decision)	Max Complexity	Coding Standard	warning	Backward Compatibility ³	Automated Test Coverage (Statement / Decision)	Tests	Development Test Coverage (Statement / Decision)	s7g2	6P2s	s5d5	s5d3	s3a7	s3a6	s3a3	s3a1	s1ja	s128	s124	Tested on all HWs 4	Tests Traceable	Tests Passed	Test Matrix Complete	
1	bsp	100%	5	5	5	5	5	(100/100)	13	0	0	1	(88/80)	193	(4/38)	31	33	33	33	33	33	33	33	33	33	31	1	1	2	1	
2	r_acmphs *	100%	5	5	5	5	5	(100/100)	10	0	0	1	(0/0)	33	(83/70)	9	9	9	10	9				9			1	1	2	1	
3	r_acmplp *	100%	5	5	5	5	5	(100/100)	8	0	0	1	(0/0)	27	(84/71)		6			10	10	10	10	10	10	10	1	1	2	1	
4	r_adc	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	255	(93/89)	45	45	45	9	45	45	45	45	45	45	45	1	1	2	1	
5	r_agt	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	116	(92/89)	33	33	33	45	33	33	33	33	33	33	33	1	1	2	1	
6	r_agt_input_capture	100%	5	5	5	5	5	(100/100)	13	0	0	1	(85/79)	35	(100/100)	22	22	22	33	22	22	22	22		22	22	1	1	2	1	
7	r_analog_connect	100%	5	5	5	5	5	(100/100)	7	0	0	1	(79/74)	40	(70/62)	3	3	3	22	5	▶ 4	4	4	5	5	4	1	1	2	1	
8	r_cac	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	122	(98/94)	24	24	24	3	24	24	24	24	24	24	24	1	1	2	1	
9	r_can	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	180	(100/100)	40	40	40	24	40	40	40	40	40	40	40	1	1	2	1	
10	r_cgc	100%	5	5	5	5	5	(100/100)	15	0	0	1	(90/81)	294	(87/82)	94	94	94	40	94	94	94	94	70	70	70	1	1	2	1	
11	r_crc	100%	5	5	5	5	5	(100/100)	8	0	0	1	(100/100)	80	(86/80)	10	10	10	94	10	10	10	10	10	10	10	1	1	2	1	
12	r_ctsu	60%	5	5	0	0	5	(100/100)	84	247	0	1	(94/87)	229	(31/21)	14	14	14		14					13	13	1	1	2	1	
13	r_dac	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	56	(100/100)	34	34	34	10	34	34	34	34	34		34	1	1	2	1	
14	r_dac8	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	50	(95/94)		14					37	37	37	37		1	1	2	1	
15	r_dmac	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	117	(96/92)	29	29	29	34	29	29	29	29				1	1	2	1	
16	r_doc	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	52	(99/96)	7	7	7	29	7	7	7	7	7	7	7	1	1	2	1	
17	r_dtc	100%	5	5	5	5	5	(100/100)	10	0	0	1	(100/100)	111	(96/93)	28	28	28	7	28	28	28	28	28	28	28	1	1	2	1	
18	r_elc	100%	5	5	5	5	5	(100/100)	5	0	0	1	(100/100)	48	(80/62)	7	7	7	28	7	7	7	7	7	7	7	1	1	2	1	
19	r_flash_hp	100%	5	5	5	5	5	(100/100)	10	0	0	1	(96/95)	184	(93/86)	29	29	29	7								1	1	2	1	

Image Source: Renesas

Presented by:

Additional Resources

- Supporting Materials
 - Beningo.com
 - Blog
 - Code, White Papers, Courses
- Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm

From <u>www.beningo.com</u> under

 Blog > CEC – Designing and Launching an Embedded Product

