Introduction to Software Defined Radio (SDR) -A Hands-on Course

Class 2: RF and Radio Basics

September 26, 2017

Charles J. Lord, PE President, Consultant, Trainer Blue Ridge Advanced Design and Automation

Blue Ridge Advanced Design and Automation Asheville, North Carolina

This Week's Agenda

- 9/25 Intro to SDR
- 9/26 RF and Radio Basics
- 9/27 Exploring SDR with the RTL-SDR, Part 1
- 9/28 Exploring SDR with the RTL-SDR, Part 2
- 9/29 Commercial SDR Designs

Blue Ridge Advanced Design and Automation Asheville, North Carolina

This Week's Agenda

- 9/25 Intro to SDR
- 9/26 RF and Radio Basics
- 9/27 Exploring SDR with the RTL-SDR, Part 1
- 9/28 Exploring SDR with the RTL-SDR, Part 2
- 9/29 Commercial SDR Designs

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Radio Frequencies (RF)

• Somewhere between sound and light...

	30 km	.3 km	3 m	3 cm	
	VLF LF	MF HF		SHF EHF	
	AM Broadcast			ar Bands Microwaves	
	l 10 kHz	<u>≁</u> 1 MHz	100 MHz	10 GHz	
ITU Band		Frequen	cy Range	Wavelengt	h
VLF		3 Khz – 3	30 Khz	100 Km – 1	L0 Km
LF		30 Khz –	- 300 Khz	1 m – 100	Km
MF		300Khz -	– 3 Mhz	10 m – 1 m	ı
HF		3 Mhz –	30 Mhz	100 m – 10) m
VHF		30 Mhz ·	– 300 Mhz	10 m – 1 m	ı
UHF		300 Mhz	z – 3 Ghz	1 m – 10 c	m
SHF		3 Ghz –	30 Ghz	10cm – 1ci	m
EHF		30 Ghz -	- 300 Ghz	1 cm – 1 m	ım

Blue Ridge Advanced Design and Automation Asheville, North Carolina

4

Wavelength

wavelength λ in meters = $\frac{300,000}{Frequency}$ in Hz

Thus, for 2.4 Ghz $\lambda = \frac{300,000}{2,400,000} = 125 \ mm$

Question 1 – Is there an Extremely LOW Frequency band (ELF)? What was it ever used for?

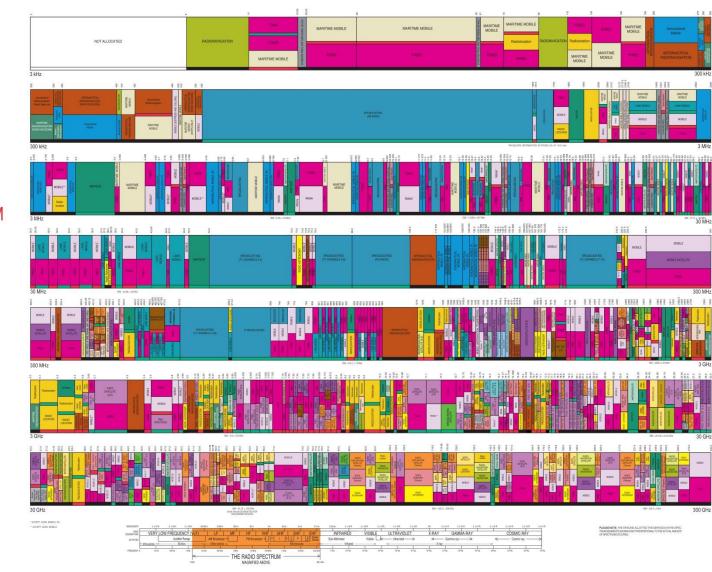
Blue Ridge Advanced Design and Automation
Asheville, North Carolina

Presented by:

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

ALLOCATION USAGE DESIGNATION


 SERVICE
 EXAMPLE
 DESCRIPTION

 Primary
 FIXED
 Capital Letters

 Secondary
 Mobile
 1st Capital with lawer case letters

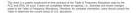
This chart is a graphic single-point-in-time portrayal of the Table of Enquerry Allocations used by the FCG and MTM, As such, it does not comprisely metical all aspects, i.e., hothotas and neget charges made to the Table of Prequerry Allocations. Therefore, for complete information, users should consult the Table to dimension for example tables of U.S. advanteme.

Blue Ridge Advanced Design and Automation Asheville, North Carolina

6

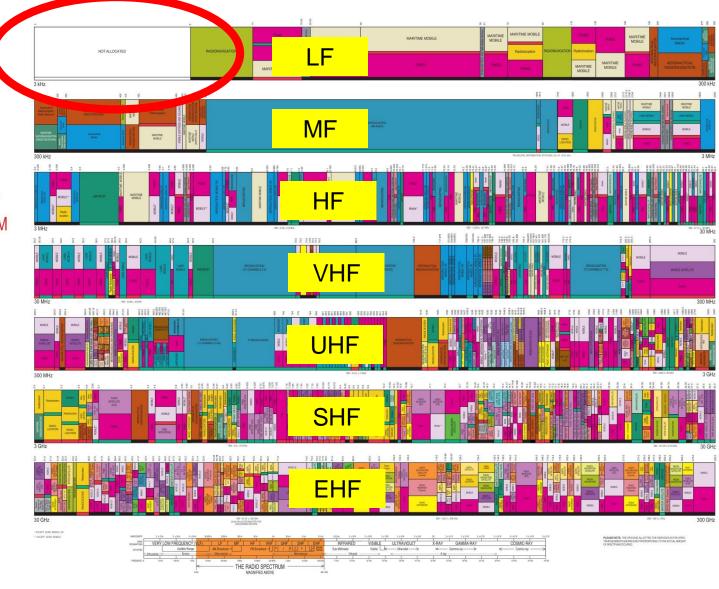
Presented by:

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM



ALLOCATION USAGE DESIGNATION

 SERVICE
 EXAMPLE
 DESCRIPTION


 Primary
 FIXED
 Capital Letters

 Secondary
 Mobile
 1st Capital with Iswer case letters

DesignNews CEC

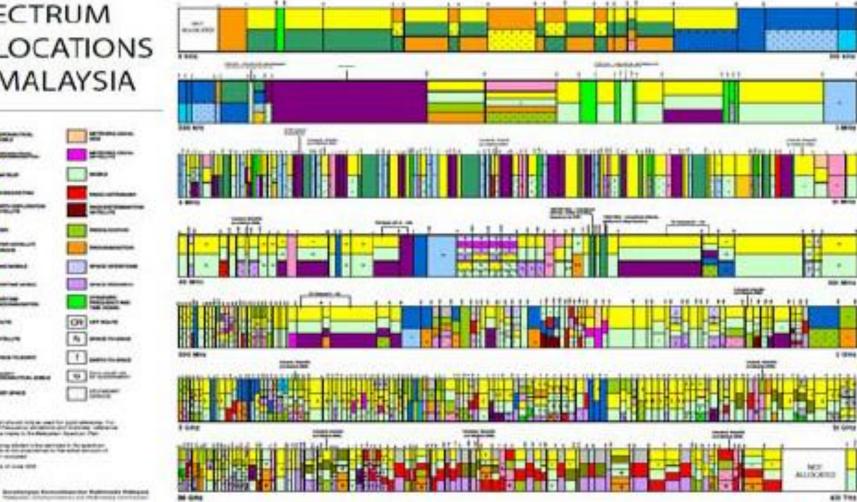
Presented by:

Blue Ridge Advanced Design and Automation Asheville, North Carolina

7

CONTINUING EDUCATION

SPECTRUM ALLOCATIONS IN MALAYSIA



and a state of the diversity of

Annual and in long with

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

8

Presented by:

Frequency Spectrum Allocation

Unlicensed ISM/SRD bands:

• USA/Canada:

260 - 470 MHz (FCC Part 15.231; 15.205)

902 - 928 MHz (FCC Part 15.247; 15.249)

2400 - 2483.5 MHz (FCC Part 15.247; 15.249)

• Europe:

433.050 - 434.790 MHz (ETSI EN 300 220)

863.0 - 870.0 MHz (ETSI EN 300 220)

2400 - 2483.5 MHz (ETSI EN 300 440 or ETSI EN 300 328)

• Japan:

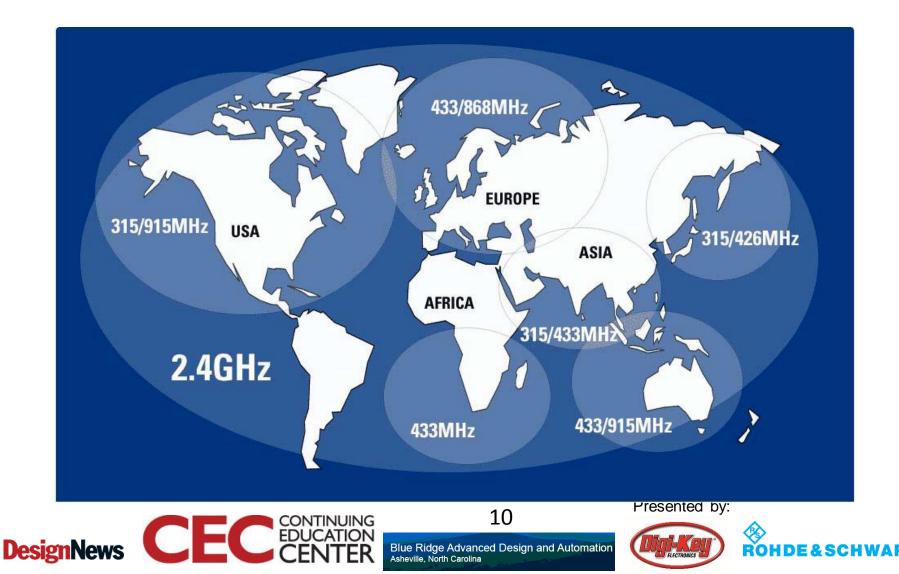
315 MHz (Ultra low power applications)

426-430, 449, 469 MHz (ARIB STD-T67)

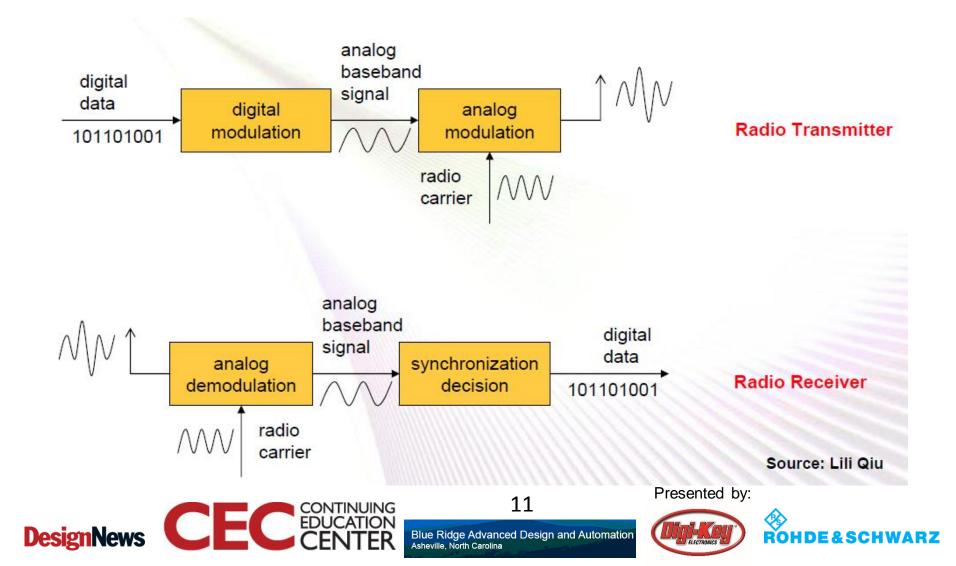
2400 - 2483.5 MHz (ARIB STD-T66)

2471 – 2497 MHz (ARIB RCR STD-33)

ISM = Industrial, Scientific and Medical **SRD** = Short Range Devices



Blue Ridge Advanced Design and Automation
Asheville, North Carolina



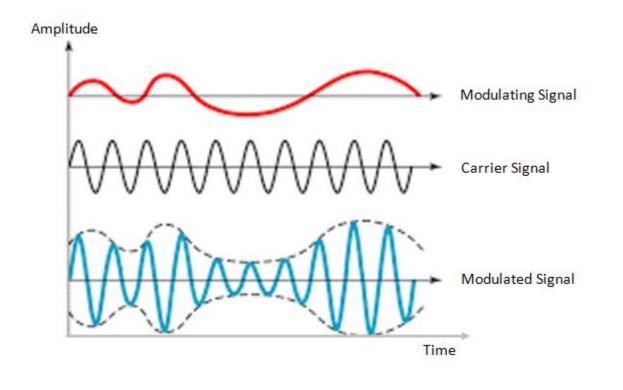
Worldwide ISM / SRD

Modulation and Demodulation

Modulation: The process of superimposing a low frequency signal onto a high frequency signal

Three modulation schemes available:

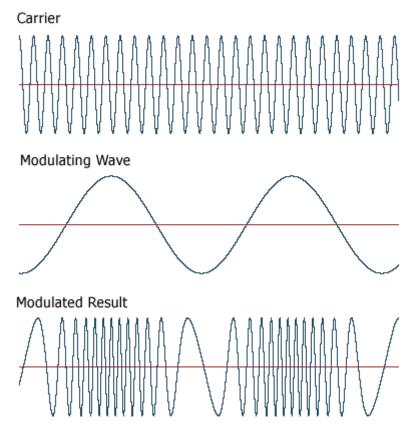
- **1. Amplitude Modulation (AM):** the amplitude of the carrier varies in accordance to the information signal
- **2. Frequency Modulation (FM):** the frequency of the carrier varies in accordance to the information signal
- **3. Phase Modulation (PM):** the phase of the carrier varies in accordance to the information signal



12

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Amplitude Modulation

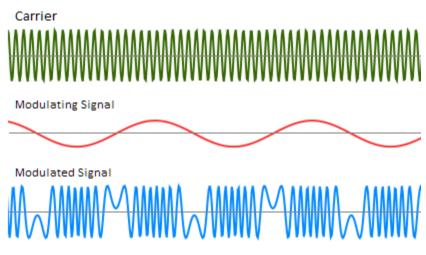

13

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Presented by:

Frequency Modulation

Asheville, North Carolina

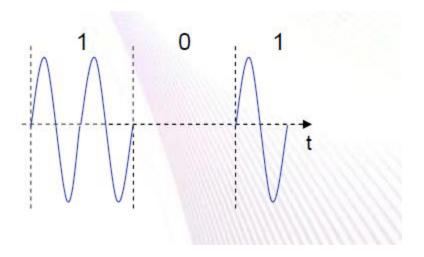


14

Phase Modulation

Phase Modulation

15

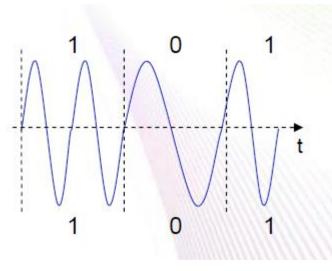

Blue Ridge Advanced Design and Automation Asheville, North Carolina Presented by:

RO

OK, what about digital?

• AM (on / off keying or CW)

16


Blue Ridge Advanced Design and Automation Asheville, North Carolina

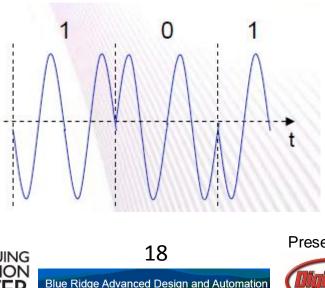
Frequency Shift Keying (FSK)

- less susceptible to noise than AM
- theoretically requires larger bandwidth/bit than AM

17

Advanced Design and Automation

Phase Shift Keying (PSK)

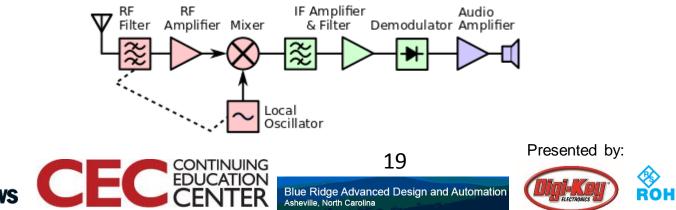

Pros:

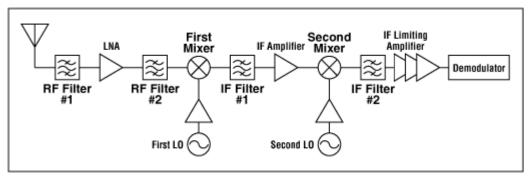
- Less susceptible to noise
- Bandwidth efficient

Cons:

 Require synchronization in frequency and phase complicates receivers and transmitter

Example: IEEE 802.15.4




Superheterodyne Receiver

- Mixes a (typically higher) frequency than the desired RF
- Output of the mixer is the two mixed frequencies, the sum, and the difference
- We filter all but the difference into an intermediate frequency or IF

Dual Conversion

 In order to increase selectivity and cut out frequencies close to the desired frequency, a second IF stage was added

Question 2 – What are common first and second IF frequencies?

Asheville North Carolina

20

Free Space Propagation

Friis' transmission equation for free space propagation:

$$P_{r} = P_{t} + G_{t} + G_{r} + 20\log\left(\frac{\lambda}{4\pi}\right) - 20\log d \text{ or } P_{r} = \frac{P_{t}G_{t}G_{r}\lambda^{2}}{(4\pi)^{2}d^{2}}$$

- P_t is the transmitted power, P_r is the received power
- G_t is the transmitter antenna gain, G_r is the receiver antenna gain
- λ is the wavelength
- d is the distance between transmitter and receiver, or the range

21

Presented by:

Frequency Vs Range

- If range is cut in half as frequency is doubled, why do we want higher RF frequencies?
 - As we double the frequency, the wavelength is halved. Thus we can get more gain in a smaller antenna (within reason)
 - As we go up in frequency, we can achieve greater bandwidth (BW is a lower % of center frequency)
 - Higher frequencies tend to be line of sight

22

ue Ridge Advanced Design and Automation neville, North Carolina

Antennas

- The 'ideal' free-space antenna is a half-wave dipole, but it is directional
- A quarter-wave element with a ground is the best omnidirectional
- We can compress an antenna's length by taking the long length and winding it as a helical (within reason)
- All of these simple antennas are very low bandwidth and have sensitive impedances
- We need to match this complex impedance to the transmission line, and the line to the radio

23

ue Ridge Advanced Design and Automation neville, North Carolina

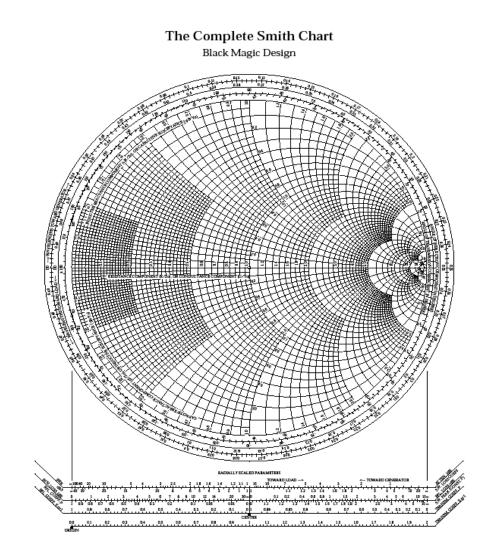
Impedance Matching

- Any given antenna has a certain complex impedance at any point of attachment (feed point) at any given frequency
- The antenna may have a balanced output or an unbalanced output (referenced to ground)
- Transmission lines are typically expressed as total impedance (say, 50 or 75 Ω)
- Outside of the scope of this class, but matching circuits must be added to provide maximum efficiency (minimum loss)

Smith Chart

- Philip Smith of Bell Laboratories developed the "Smith Chart" back in the 1930"s to expedite the tedious and repetetive solution of certain rf design problems. These include:
 - Transmission line problems
 - RF amplifier design and analysis
 - L-C impedance matching networks
 - Plotting of antenna impedance
 - Etc.

Presented by:


Construction

- The Smith Chart is made up of a family of circles and a second family of arcs of circles.
- The circles are called "constant resistance circles"
- The arcs are "constant reactance circles"
- Impedances must be entered in rectangular form broken down into a real and an imaginary component.
- The real part (resistance) determines the circle to use.
- The imaginary part (reactance) determines the arc to use.
- The intersection of an arc and a circle represents the plotted impedance.

Presented by:

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Presented by:

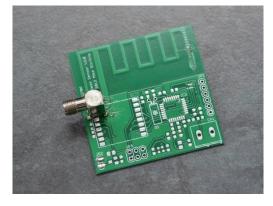
https://sourceforge.net/projects/gnssmithchart/

🛞 Smith Chart 2.0beta				
File Edit View Help				
Add Point				
Z name 0.0 + 0.0 j Z0 50 Add	0.5			
Point Operations Select Point	XXHALAX			
new name Rename Delete Point Delete All Undo Redo None	0.2			
Cursor Reference				
Set Cursor to point Set to point WTG: 0.25 > Reset	0.0			
Circles				
SWR: 2 > Set SWR to selected point Rotated 1+jX Circle WTL 0 >	-0.2			
Intersections	-0.5			
Intersection SWR and 1+jX Circle	-1.0			
Intersection Rotated 1+jX and Re Circle				
Question 3 – Ever used a Smith Chart?				

Presented by:

Commonly Used Antennas in 2.4Ghz

PCB antennas


- Little extra cost (PCB)
- Size demanding at low frequencies
- Good performance possible
- Complicated to make good designs

¼ wave whip antennas

- Expensive (unless piece of wire)
- Good performance
- Hard to fit in may applications

Chip antennas

- Expensive
- OK performance

29

Blue Ridge Advanced Design and Automation

Tunable Antennas

- We need ways of making one antenna have usable gain at multiple frequencies or even a very broad range of frequencies
- Active antennas give some success, much like an actively tuned version of the 'long wire' antenna

30

Iue Ridge Advanced Design and Automation sheville, North Carolina

Selectivity

- ACR = Adjacent Channel Rejection
- ACS = Adjacent Channel Selectivity

CONTINUING

FDL

DesignNews

Image Rejection

 Remember that the first injection mixer outputs both the sum and difference of the local oscillator and the input – AND interharmonics. What happens if there is another signal IF-frequency +/- the IF frequency

Image frequency

Desired frequency

Presented by:

LO

Test Equipment

Vector Network Analyzers

Component Characterization – insertion loss

S-parameters - matching

Spectrum Analyzers

Output Power, harmonics, spurious emission

Phase Noise

Signal Generators

Sensitivity (BER option needed)

Selectivity/blocking

Two-tone measurements – IP3

Oscilloscopes

Digital signal analysis

Function and Arbitrary Waveform Generators

Presented by:

ROHDE&SCHWARZ

Blue Ridge Advanced Design and Automation Asheville, North Carolina

33

This Week's Agenda

- 9/25 Intro to SDR
- 9/26 RF and Radio Basics
- 9/27 Exploring SDR with the RTL-SDR, Part 1
- 9/28 Exploring SDR with the RTL-SDR, Part 2
- 9/29 Commercial SDR Designs

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Please stick around as I answer your questions!

- Please give me a moment to scroll back through the chat window to find your questions
- I will stay on chat as long as it takes to answer!
- I am available to answer simple questions or to consult (or offer in-house training for your company) c.j.lord@ieee.org http://www.blueridgetechnc.com http://www.blueridgetechnc.com
 http://www.linkedin.com/in/charleslord
 Twitter: @charleslord
 https://www.github.com/bradatraining

Blue Ridge Advanced Design and Automation Asheville, North Carolina

