Sensor Edge Processing for the IoT

Class 2: Data Considerations

February 28, 2017 Louis W. Giokas

Presented by:

DesignNews

This Week's Agenda

Monday Tuesday Wednesday Thursday

Friday

Architecture Data Considerations Devices – Sensor Level Devices – Aggregation/ Communication Level Algorithms

Course Description

- The cloud is the central gathering point for all data these days. The Internet of Things (IoT) generates a lot of data. Getting that data to the cloud introduces latency which is a problem for IoT analytics and real time decision making.
- The answer to this is processing data at the "edge".
- New devices, and not a few older devices, make this possible.
- We will look at architectures and algorithms useful for edge processing of sensor data in the IoT.

Presented by:

DesignNews

Today's Agenda

- Types of Data
- Data at the Sensor
- Data at the Edge
- Data in the Cloud
- Conclusion/Next Class

Types of Data

- There are lots of different types
 - Obvious, I know
 - But, this is not transactional data
 - We don't need a transactional database system
- There are many types of sources
 - We normally class them as Industrial and Consumer
 - There are other classes we will also discuss

Types of Data

- Sensor Data
 - Most of the time we are talking about sensors
 - There are lots of types of sensors
 - Simple sensors: temperature, switch (open/closed)
 - Status sensors: take a number of measurements and consolidate (e.g., engine monitor sensors)
 - Video streams (e.g., security cameras, inspection systems)
 - Other continuous streasms (e.g., radar, Lidar)
 - We define sensor data as always flowing "up" the chain of devices

Types of Data

- Command data
 - The IoT is not a one way street
 - Command and control architecture
 - Commands sent back down from the processing or analytics level tend to be time-critical
 - This is not necessarily "real-time" command and control
 - May require more communication
 - Ack/nack
 - Broadcast
 - Parameter updates

- Assume all sensors in the IoT have some communication capability
 - This may be to a local communication aggregator
 - Typically we store a minimum amount of data at the sensor
 - Offload to higher levels as soon as possible
 - Buffering limited

- Sensors vary widely in amount of processing power and memory available
- Power (electrical) is another potential limiting factor
 - Ultra low power such as energy harvesting devices
 - Also RFID powered where signal provides the power
 - Battery powered
 - Internal or external

9

Line powered

- Communications channels may dictate the type and amount of data that can be stored
 - Intermittent communications requires some form of buffering
 - Typically store only raw sensor data
 - Cellular networks allow (periodic) connectivity that is generally highly reliable
 - Wi-Fi connectivity allows high speed access to the Internet, such as used in Consumer IoT
 - Direct IP connectivity, such as used in Industrial IoT settings, allows high speed continuous communication

- Sensors can store some history
- Parameter data
 - Allow the sensor to make decisions/detect anomolies
 - We will discuss further under algorithms
- Commands
 - Formats, tables and history

- Edge devices have a lot more storage and processing power, potentially, than the sensors connected to them
- It is here we can store all the necessary data for processing more complex algorithms
- In some cases we can even have mass storage devices
 - Currently likely to be solid state disk

- Edge processing scenarios may involve locally meaningful computations and actions
 - Work cell control in a factory
 - Home control and assisted living applications
 - Local traffic control
- While these applications and others will also interact with higher level analyses, meaningful work can be done with local data

- Example:
 - Sewer flow meter data
 - Collected every five minutes
 - 12 times per hour, 288 times per day, 2,016 time per week, 104,832 times per year
 - If there are several sensors in a particular area, say 10, we get 1,048,320 sensor readings per year. If each is 100 bytes long, that translates to 100 MB per year.
 - This can be stored in a SoC device in flash memory
 - If there is a control function, then long term trends can be observed and used to make decisions
 - Similar data rates are used for systems like large diesel engines

- Data stored at the edge, as with most IoT data does not need to be stored in a transactional (read relational) DBMS
- Non-SQL and other non-traditional DBMS technologies are more appropriate
 - They are also easier to implement on various types of equipment
- A RDBMS can be used, but is generally overkill

- In general, most data will eventually be moved to the cloud
- This allows long term archiving of data
 Sometime called the Data Lake
- This also allows for exploratory data analysis on a large scale
 - Necessary to find out what patterns there are in the data as it develops over time
 - In many cases such data has not been available in such detail

- The cloud layer can act as a assistive resource to edge resources
 - Users and devices may move from one edge region to another
 - The cloud assists in tracking and in providing continuity between edge devices
 - Especially useful for vehicular systems and user based applications such as Ambient Assisted Living (AAL)

- Distributed IT resources make up the edge, sometimes called the fog (re: yesterday's lecture)
 - Replication of data as it is needed
 - E.g., moving between systems
 - Broadcast of common data
 - Periodic update of parameters and control information
 - Mobile is a driver

- Database types
 - One of the true Big Data applications
 - Offered by Cloud vendors as standard services
 - Google
 - Google Cloud Storage: a unified object store targeted at analytics
 - Cloud Big Table: key/value datastore
 - Cloud Datastore: NoSQL DBMS with ACID transactions

- Database types, continued
 - Amazon
 - DynamoDB: NoSQL DBMS
 - Amazon Redshift: BI Data Warehouse
 - Works with existing BI tools
 - Others
 - Rackspace: ObjectRocket (NoSQL)
 - Oracle: Oracle NoSQL
 - IBM: Cloudant

- Analytics approaches that work best in a cloud environment
 - Statistical Learning (or Machine Learning)
 - Supervised and unsupervised learning techniques
 - Regression
 - Classification
 - Neural Networks
 - Trees/Random forests
 - Support Vector Machines

Conclusion/Next Class

- Today we looked at data, where it resides and how it might be used at each level
- There are clear differences in the capabilities at each layer and different types of data we might store there
- The layers cooperate to allow responsiveness in the dynamic IoT environment
- Tomorrow we will look at the sensor devices and some of their capabilities

