Sensor Edge Processing for the IoT

Class 1: Architecture

February 27, 2017 Louis W. Giokas

Presented by:

This Week's Agenda

Monday Tuesday Wednesday Thursday

Friday

Architecture Data Considerations Devices – Sensor Level Devices – Aggregation/ Communication Level Algorithms

Course Description

- The cloud is the central gathering point for all data these days. The Internet of Things (IoT) generates a lot of data. Getting that data to the cloud introduces latency which is a problem for IoT analytics and real time decision making.
- The answer to this is processing data at the "edge".
- New devices, and not a few older devices, make this possible.
- We will look at architectures and algorithms useful for edge processing of sensor data in the IoT.

Presented by:

Today's Agenda

- Course Overview
- Architectural Requirements
- Architectural Patterns
- Conclusion/Next Class

Course Overview

- In this course we will look at "edge" processing for the Internet of Things (IoT).
- The goal of edge processing is to move processing resources out closer to where they are used.
 - The motivation for this is to minimize latency in those cases where latency could be a problem
 - The IoT is one of those use cases

Course Overview

- The IoT is not the only situation where latency is a problem.
 - In the latest (February 2017) edition of IEEE
 Communications Magazine there is an article,
 "Mobile Edge Computing Fiber-Empowered
 Access Networks in the 5G Era" which lays out the
 motivation for edge processing in a general,
 including, but not limited to, the IoT

Course Overview

DesignNews

- Cloud computing is the default answer to analytics problems and large scale data operations
- While the cloud has the capacity and the connectivity to be used in a highly distributed environment, it has one major flaw:

– Communications latency

• The cloud was designed for large scale, variable volume and velocity environments

Presented by:

- The cloud was not designed for real-time applications
- The cloud overlaps with Big Data
 - Large volumes
 - Variety of data and sources
 - Velocity of data
- These are important, but do not always meet the needs of the IoT

- While hyper scale data centers are, well, hyper (big) the IoT still threatens to overwhelm them
 - Billions (perhaps trillions) of devices
 - Lots of data per device
- All of this data does not need to be analyzed together
 - This is a common fallacy
 - E.g., traffic data in Chicago does not have any connection with or bearing on construction equipment in China

- Latency:
 - This is the main driver of edge processing
 - Typical scenarios include measurement, analysis and command (think SCADA)
 - This is a tied with QoS requirements more familiar in a communications context
 - Applications in this environment typically need latency of <10ms
 - E.g., telesurgery

- Reliability
 - Carrier grade reliability of 99.999% (five 9s) is required for the communications network and control applications in many cases
 - Mission critical applications include traffic control, telesurgery, industrial control applications
- Mobility
 - Many of the devices are mobile and require constant connectivity

- New types of IoT communication and applications
 - Vehicle to Vehicle (V2V)
 - Vehicle to Roadside (V2R)
 - Location services for healthcare
- Connection with the cloud for large scale analytic processing
 - Determining and evolving the parameters used at the edge

Presented by:

- There are many ways to organize Edge Processing
 - Many will coexist
- There are several names for this
 - Mobile Edge Computing (MEC)
 - Edge Computing
 - Fog
 - Typically two layers
 - Fog Layer and Hyper Fog
 - Extreme Edge Network

Presented by:

CONTINUING EDUCATION

DesignNews

Presented by:

CONTINUING

CONTINUING EDUCATION

Conclusion/Next Class

- Today we discussed the requirements and architectural patterns for IoT Edge Processing
- Several different architectures have been developed/proposed
- One common thread is a mixed environment of edge processing and cloud analytics
- Tomorrow we will look at the data and how it is transmitted/stored

