
Introduction to Real-Time Kernels

2013-07-19
Jean J. Labrosse

CEO, Micriµm

Signaling, Inter-Task
Communications and Debugging

1

Outline

2

 Signaling a Task

– Semaphores

– Event Flags

 Inter-task Communications

 Debugging kernel-based applications

– Output Port

– DAC output

– Kernel Aware Debuggers

– Run-Time Kernel Awareness

– Trace Tool

 Summary

Signaling a Task
(Semaphores)

3

 Semaphores are used to signal the occurrence of an

event

– Either from an ISR or another task

 Only tasks can wait for events

Task Task
OSSemWait(&Sem1)

Sem1

OSSemSignal(&Sem1)

ISR Task OSSemWait(&Sem2)

Sem2

OSSemSignal(&Sem2)

Signaling a Task
(Event Flags)

4

ISRs Tasks

OR

AND

Task

Task

Event Flags

(8, 16 or 32 bits)

OSFlagWait(&FlagGrp,

 OR,

 0x15)

OSFlagWait(&FlagGrp,

 AND,

 0x83)

FlagGrp

OSFlagSet(&FlagGrp, 0x??)

Inter-task Communications
(Message Queues)

5

 Message queues are typically used to send actual

data to tasks

 Messages are typically pointers to the actual data

– This avoids copying data

 ISRs or Tasks can send messages to other Tasks

 Only Tasks can receive messages

Task

Task
OSQReceive(&Queue)

Queue OSQSend(&Queue,

 &Data)

ISR

Data

Inter-task Communications
(Message Queues)

6

RPMTask()

{

 while (1)

 Wait for message from ISR (with timeout);

 if (timed out)

 RPM = 0;

 else {

 DeltaCounts = Counts

 – PreviousCounts;

 PreviousCounts = Count;

 RPM = 60 * Fin / DeltaCounts;

 }

 Compute average RPM;

 Check for overspeed/underspeed;

 Keep track of peak RPM;

}

ISR
RPM

Task

Counts=Fin * t

32-Bit
Input Capture Fin

Counts

Previous

Counts

RPM_ISR()

{

 Read Input Capture;

 Post Counts;

}

RPM

Avg. RPM

Under Speed

Over Speed

Max. RPM

Counts

Message

Queue

Debugging with Kernels
(Debugger)

7

Debugging with Kernels
(Kernel Aware Debugger)

8

Debugging with a Kernel
(Output Port)

9

Output
Port

(GPIO)

Logic
Analyzer

or
Oscilloscope

Task 1 Task 1

Task 2

Task 8 Task 8

Task 2

Debugging with a Kernel
(DAC Output)

10

DAC Oscilloscope

Task 1

Task 2

Task N

Debugging with Kernels
(Run-Time Kernel Awareness)

11

Debugging with Kernels
(Kernel Trace Tool)

12

Summary

13

 A kernel is software that manages the time of a CPU

– A kernel is a ‘Subset’ of an RTOS

– Allows multitasking – you split your application into ‘Tasks’

– Each task is assigned a ‘Priority’

– Provides services to your application

 Semaphores, Queues, Timers, Time Management and so on

 Most kernels are ‘Preemptive’

– The kernel will always run the highest-priority task that is ready-to-run

 A Task is an Infinite Loop

– Each task needs to wait for an event to occur

– Each task has its own stack, can access data and I/O devices

Summary

14

 ISRs are more important than tasks

– ISRs can be kernel or non-kernel aware

 Kernels typically require a Tick ISR

– Provides time delays and timeouts

– This is NOT mandatory

 Your application might share resources

– You need to protect those with Mutexes

Conclusion

15

Thank you for attending

Hope you found this class useful

www.micrium.com

