
Introduction to Real-Time Kernels

2013-07-18
Jean J. Labrosse

CEO, Micriµm

Time & Resource Management

1

Outline

2

 The Tick ISR

– Time Delays

– Timeouts

 Soft Timers

 Resource sharing and Mutual Exclusion

– Priority Inversions

– Priority Inheritance

The Tick ISR

3

 Most kernels require a periodic interrupt source

– Through a hardware timer

 Interrupt rate between 10 and 1,000 Hz

– Could be from the power line

 50 or 60 Hz

– The higher the tick rate, the higher the overhead

 A Clock Tick is NOT mandatory

Why do kernels have a Tick?

4

 To allow tasks to suspend execution based on time

– For example, scanning a keyboard

void MyTask (void)

{

 while (1) {

 OSTimeDly(50);

 Scan keyboard;

 }

}

 To provide timeouts while waiting for events

– Avoids waiting forever for events to occur

– Eliminates deadlocks

Tick Wait List

5

Task 10

Time

Task 1

Kernel

Tick ISR

Task

Task Task 2

Task 3

Task 10

Task

Task

Soft Timers

6

 Most kernels provide ‘soft timers’

– Soft Timers are derived from a single interrupt source

– ‘Callback’ function is called when timer expires

 Useful for ‘watchdog’ type applications

 Kernel level task manages any number of timers

 Timers can be one-shot or periodic

– Can be started, re-started or stopped

One-Shot Timers

7

Start

Count Down

Expires

Re-Start

Useful for ‘Watchdogs’

Periodic Timers

8

Start

Initial Delay Expires, Auto-Reload

Resource Sharing

9

 YOU MUST ensure that access to common resources

is protected!

– A kernel only gives you mechanisms

 You protect access to common resources by:

– Disabling/Enabling interrupts

– Lock/Unlock

– Semaphores

– MUTEX (Mutual Exclusion Semaphores)

Task

Task

Task

Shared
Resource

Variable(s)
Data

Structure(s)
I/O Device(s)

Resource Sharing
(Disabling and Enabling Interrupts)

10

 When access to resource is done quickly

– Example:

 Disable/Enable interrupts is the fastest way!

– Be careful with Floating-point!

rpm = 60.0 / time;

Disable interrupts;

Global RPM = rpm;

Enable interrupts;

Resource Sharing
(Locking and Unlocking the Scheduler)

11

 ‘Locking’ the scheduler prevents the scheduler from

changing tasks

– Interrupts are still enabled

– Can be used to access non-reentrant functions

– Can be used to reduce priority inversion

– Same effect as making the current task the Highest Priority Task

– Defeats the purpose of having a kernel.

– Pseudo code:

 ‘Unlocking’ invokes the scheduler to see if a High-

Priority Task has been made ready while locked

OS_SchedLock();

Code with scheduler disabled;

OS_SchedUnlock;

Resource Sharing
(Semaphores)

12

 A semaphore is a kernel ‘object’

– Your application needs to obtain the semaphore before it can proceed to

access the resource

– If the resource is used by another task, the caller is blocked

– Semaphores are subject to ‘priority inversions’

SemWait(&MySem);

Code can access resource;

SemRelease(&MySem);
Task

Task

Task

Shared
Resource

Variable(s)
Data Structure(s)

I/O Device(s)

MySem

Resource Sharing
(Semaphores – Priority Inversions)

13

Low Priority (Task C)

Medium Priority (Task B)

High Priority (Task A)

(1) (2)

(3)

(4)

(5) (6)

(7)

(8) (9)

Resource Sharing
(Mutual Exclusion Semaphores - Mutex)

14

 A Mutex is a kernel ‘object’

– Your application needs to obtain the mutex before it can proceed to access

the resource

– If the resource is used by another task, the caller is blocked

– Mutexes protect your application against ‘priority inversions’

MutexWait(&MyMutex);

Code can access resource;

MutexRelease(&MyMutex); Task

Task

Task

Shared
Resource

Variable(s)
Data Structure(s)

I/O Device(s)

MyMutex

Resource Sharing
(Mutual Exclusion Semaphores - Mutex)

15

Low Priority (Task C)

Medium Priority (Task B)

High Priority (Task A)

(1) (2)

(3) (4) (5)

(6)

(7)

Next Class

16

 Signaling a Task

– Semaphores

– Event Flags

 Inter-task Communications

 Debugging kernel-based applications

– Debuggers

– Kernel Aware Debuggers

– Output Port

– DAC output

– Run-Time Kernel Awareness

– Trace Tool

 Summary

