@ cnicarion CENTER

Introduction to Real-Time Kernels
Time & Resource Management

2013-07-18

Jean J. Labrosse
CEO, Micripm

DesignNews 1 euchtion CENTER

Outline

The Tick ISR
Time Delays
Timeouts

Soft Timers

Resource sharing and Mutual Exclusion
Priority Inversions

Priority Inheritance

. fexa CONTINUING
DesignNews 2 WEES) EpUCATION

CENTER

The Tick ISR

Most kernels require a periodic interrupt source

Through a hardware timer
Interrupt rate between 10 and 1,000 Hz

Could be from the power line
50 or 60 Hz

The higher the tick rate, the higher the overhead

A Clock Tick is NOT mandatory

DesignNews - @ couthmon CENTER

Why do kernels have a Tick?

To allow tasks to suspend execution based on time

For example, scanning a keyboard
void MyTask (void)
{
while (1) {
OSTimeD1l1ly (50) ;

Scan keyboard;

To provide timeouts while waiting for events
Avoids waiting forever for events to occur

Eliminates deadlocks

DesignNews euchtion CENTER

Tick Wait List

Tick ISR []

Kernel [] I] I]
Task Task 1

Task Task 2

Task Task 3

DesignNews

@ couthmon CENTER

Soft Timers

Most kernels provide ‘soft timers’
Soft Timers are derived from a single interrupt source
‘Callback’ function is called when timer expires

Useful for ‘watchdog’ type applications
Kernel level task manages any number of timers

Timers can be one-shot or periodic
Can be started, re-started or stopped

@ eoicrmon CENTER

DesignNews

Start

One-Shot Timers

Re-Start
Useful for ‘Watchdogs’

OSTmrStart()

OSTmrCreate()

DesignNews

T N
dly \l\
cks (ticks) Expires
J Time

Count Down

----------- >

makanry CONTINUING
wn?/ EDUCATION

CENTER

Periodic Timers

Start

OSTmrCreate() OSTmrStart() L. .
Initial Delay Expires, Auto-Reload

W \ Auto-reload
Ticks dly T &
(ticks)
period
J (ticks)

Time

Callback Callback Callback Callback Callback
Called Called Called Called Called

DesignNews - eouchiion CENTER

Resource Sharing

YOU MUST ensure that access to common resources
is protected!

A kernel only gives you mechanisms

You protect access to common resources by:

Disabling/Enabling interrupts
Lock/Unlock

Semaphores

MUTEX (Mutual Exclusion Semaphores) @ —

euchtion CENTER

Resource Sharing
(Disabling and Enabling Interrupts)

When access to resource is done quickly

Example:
rpm = 60.0 / time;
Disable interrupts;
Global RPM = rpm;
Enable interrupts;

Disable/Enable interrupts is the fastest way!

Be careful with Floating-point!

DesignNews 10 & ennchrion CENTER

Resource Sharing
(Locking and Unlocking the Scheduler)

‘Locking’ the scheduler prevents the scheduler from
changing tasks

Interrupts are still enabled

Can be used to access non-reentrant functions

Can be used to reduce priority inversion

Same effect as making the current task the Highest Priority Task

Defeats the purpose of having a kernel.

Pseudo code:

OS_SchedLock () ;
Code with scheduler disabled;
OS_SchedUnlock;

‘Unlocking’ invokes the scheduler to see if a High-
Priority Task has been made ready while locked

DesignNews 11 @ eoicamon CENTER

Resource Sharing

(Semaphores)
A semaphore is a kernel ‘object’

Your application needs to obtain the semaphore before it can proceed to
access the resource

If the resource 1s used by another task, the caller 1s blocked

SemWait (&MySem) ;
Code can access resource;
SemRelease (&MySem) ;

DesignNews 1 ® eoucanion CENTER

Resource Sharing

(Semaphores — Priority Inversions)

(3) (8) (9)

High Priority (taskA) - _

(5) (6)

Medium Priority (task B) _

A 4 v

Low Priority (Task C) // ////// //////

(1) N C) (7)

DesignNews 13

@ NN CENTER

Resource Sharing

(Mutual Exclusion Semaphores - Mutex)
A Mutex is a kernel ‘object’

Your application needs to obtain the mutex before it can proceed to access
the resource

If the resource 1s used by another task, the caller 1s blocked
Mutexes protect your application against ‘priority inversions’ MyMutex

|
E

® eoucanion CENTER

MutexWait (&MyMutex) ;
Code can access resource;
MutexRelease (&MyMutex) ;

ﬂk
'

DeSignNews 14

Resource Sharing

(Mutual Exclusion Semaphores - Mutex)

(3)(4) (5)

High Priority (task A) W
/
l (6)
Medium Priority (task B) _
Low Priority (Task C) //

(1) (2) (7)

DQSignNews 15

® eoucanion CENTER

Next Class

Signaling a Task
Semaphores
Event Flags
Inter-task Communications
Debugging kernel-based applications
Debuggers
Kernel Aware Debuggers
Output Port
DAC output
Run-Time Kernel Awareness
Trace Tool
Summary

DesignNews 16

@ eoicrmon CENTER

