
Introduction to Real-Time Kernels

2013-07-17
Jean J. Labrosse

CEO, Micriµm

Scheduling and Context Switching

1

Outline

2

 Scheduling

– What is scheduling?

– What is round-robin scheduling?

– When does scheduling happen?

– What is the outcome?

 Context Switching

– What is a task’s context?

– How does context Switching work?

 Servicing Interrupt

– Priorities of interrupts

– Anatomy of an ISR

– Kernel Aware vs Non-Kernel Aware ISRs

Task Priorities

3

 Each task is assigned a priority when it’s created

– Based on the importance of the task in your application

– In general high priority task are assigned to the functions of your

product

 Control systems, communications, user interface, etc.

 Always run the highest priority task ready

 Ready-to-run tasks are placed in a ‘Ready-list’

The Ready List

4

0

Idle

Task

TCB TCB TCB

Highest

Priority

TCB TCB TCB

Lowest

Priority

Ready

List

Ptr

What is Scheduling?

5

 Deciding whether a more important task needs to run

 When does scheduling occur?

– When a task decides to wait for time to expire

– When a task or an ISR ‘signals’ or notifies another task about an event

– When a task or an ISR ‘sends’ a message to another task

– When the priority of a task is changed

– When a task is suspended

 What’s the outcome

– Possibly a ‘Context Switch’

Context Switch
CPU Registers

6

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SW

PC

SP

Context Switch

7

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

Context Switch

8

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

(1)

(2)

Context Switch

9

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

(1)

(2)

Old

Task’s TCB
(RAM)

(3)

Context Switch

10

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

(1)

(2)

Old

Task’s TCB
(RAM)

(3)

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

New

Task’s TCB
(RAM)

(4)

Context Switch

11

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

(1)

(2)

Old

Task’s TCB
(RAM)

(3)

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

New

Task’s TCB
(RAM)

(4)
(5)

Context Switch

12

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

SP

SW

PC

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

(1)

(2)

Old

Task’s TCB
(RAM)

(3)

R0

R1

R2

R3

R4

R8

R5

R6

R7

R9

R10

R11

R12

R13

R14

R15

PC

SW

Task’s Stack
(RAM)

New

Task’s TCB
(RAM)

(4)
(5)

(6)

Context Switch

13

Lower Priority Task

Kernel
(Scheduling & Context Switch)

Higher Priority Task

Time

Round-Robin Scheduling

14

0

Idle

Task

TCB TCB TCB

Highest

Priority

TCB TCB TCB

Lowest

Priority

Ready

List

Ptr

Round-Robin Scheduling

15

Task 1

Time

Task 2

Task 3

Task 1

Task 2

Time

Quanta

Kernel

Servicing Interrupts

16

 Interrupts are always more important than tasks.

 Interrupts are always recognized unless …

– … Your application disables interrupts

– … Or, the kernel disables interrupts

 Interrupt Service Routines (ISRs) should be kept as

short as possible

Interrupt Handlers

17

MyISR: (1)

Save CPU registers; (2)

Notify the kernel that an interrupt is being processed; (3)

Signal a task that its event occurred; (4)

Notify the kernel that the ISR is done; (5)

Restore saved CPU registers; (6)

Return from interrupt; (7)

Resuming the interrupted task

18

Task

Time

Kernel

ISR

(1)

(2)

(3) (4) (5)

Task Task

(6)

(7)

Running a more important task

19

Task

Time

Task 2

Kernel

ISR

(1)

(2)

(3) (4) (5)

Task

Task

Kernel Aware vs Non-Kernel Aware
Interrupts

20

 Interrupts that tasks are waiting for are called

‘Kernel Aware’ interrupts.

– Most of the ISRs in an application will be Kernel Aware

 Interrupts that don’t need to notify tasks are

‘Non-Kernel Aware’ interrupts.

– e.g. An ISR that simply reloads the value of a PWM register

– Pseudo-code:

MyISR:

Save CPU registers;

Service interrupting device;

Restore CPU registers;

Return from Interrupt;

Next Class

21

 The Tick ISR

– Time Delays

– Timeouts

 Soft Timers

 Resource sharing and Mutual Exclusion

– Priority Inversions

– Priority Inheritance

