
Introduction to Real-Time Kernels

2013-07-15
Jean J. Labrosse

CEO, Micriµm

What is a Real-Time Kernel?

1

Outline

Foreground/Background Systems

Real-Time Kernels

• What is it?

• A subset of an Real-Time Operating System (RTOS)

• Multitasking

• Preemptive Kernel

• Benefits and Drawbacks

2

Foreground/Background
(a.k.a. Super Loops)

3

Background (i.e. Tasks)

int main (void)

{

 Perform initializations;

 while (1) {

 ADC_Read();

 DI_Read();

 USB_Packet();

 LCD_Update();

 Audio_Decode();

 File_Write();

 Etc;

 }

}

Foreground (i.e. ISRs)

void USB_ISR (void)

{

 Clear interrupt;

 Read packet;

}

Foreground/Background
Benefits

4

 No upfront cost

 Minimal training required

– Developers don’t need to learn a kernel’s API

 No additional memory to accommodate the kernel

– There’s a small amount of overhead with a kernel

 Minimal interrupt latency

Foreground/Background
Drawbacks (1)

5

int main (void)

{

 Perform initializations;

 while (1) {

 ADC_Read();

 DI_Read();

 USB_Packet();

 LCD_Update();

 Audio_Decode();

 File_Write();

 Etc;

 }

}

void ADC_Read (void) {

 Initialize ADC;

 while (ADC_not_ready) {

 ;

 }

 Process converted value;

}

 Difficult to ensure that each operation will meet its

deadline

– All the code in the ‘background’ has the same priority

– One function can affect the responsiveness of the whole system!

Unexpected delays

adversely impact the

entire background

Foreground/Background
Drawbacks (2)

6

 High-priority code must be placed in ISRs

– Long ISRs will impact the responsiveness of the system

– Coordinating the foreground and background is difficult

– The developer must implement foreground-background communications services

while (1) {

 ADC_Read();

 SPI_Read();

 USB_Packet();

 LCD_Update();

 Audio_Decode();

 File_Write();

}

void USB_ISR (void) {

 Clear interrupt;

 Read packet;

}

If a USB packet is received immediately

after this function returns, the response

time will be lengthy.

Foreground/Background
Drawbacks (3)

7

 Code is difficult to maintain with multiple developers

– The efforts of all developers must be closely coordinated in order to

ensure that proper application’s timing requirements will be met

 Expanding the application can prove difficult

– … Even with a single developer

– Changes to one portion of the code may negatively impact the rest of

the code

– As the application grows, inefficient use of resources may not be

avoidable

Real-Time Kernel
What is it?

8

 It’s software

– That manages the time and resources of a CPU or MCU-based

application

– It ensures that more important code runs before less important code!

 It provides ‘Multitasking’ capabilities

– You break down the application into smaller tasks

– You tell the kernel which tasks are more important

– The kernel will try to satisfy your requirements at run-time

– Each task it ‘thinks’ it has its own CPU

 It provides ‘Services’

– Task management, resource sharing, time management,

synchronization, communications, etc.

Real-Time Kernels
Your code sees an API

9

CPU
(8-, 16-, 32- or 64-bit or DSP)

Real-Time Kernel
(Scheduling + Context Switching)

Your Application
(Tasks)

API (i.e. services)

Port

Real-Time Kernels
Are a subset of an RTOS

10

CPU

Real-Time Kernel
(Scheduling + Context Switching)

Your Application (Tasks)

API
(i.e. services)

Port

Ethernet USB LCD Storage Media Etc.

TCP/IP USB GUI

Driver Driver Driver

FS

Driver

Real-Time

Operating

System

(RTOS)

Multitasking
Splitting an application into Tasks (2)

11

High Priority Task

Low Priority Task

Task

Task

Task

Task

Task

Importance

Multitasking
Splitting an application into Tasks (1)

12

Task Code

Event

Infinite Loop

MyTask ()

{

 while (1) {

 Wait for Event;

 Task code; // YOUR code

 }

}

Real-Time Kernels
Preemptive

13

Low Priority Task (LPT) (1)

Real-Time Kernels
Preemptive

14

ISR

Low Priority Task (LPT)

ISR

Interrupt Occurs

Vector to ISR

(2)

(3)

(1)

Real-Time Kernels
Preemptive

15

ISR

Low Priority Task (LPT)

ISR

ISR make High Priority Task (HPT) Ready Interrupt Occurs

Vector to ISR

ISR

Completes

(Switch to HPT)

(2)

(1)

(3)

(4)

(5)

(6)

Real-Time Kernels
Preemptive

16

ISR

Low Priority Task (LPT)

High Priority Task (HPT)

ISR

ISR make High Priority Task (HPT) Ready Interrupt Occurs

Vector to ISR

ISR

Completes

(Switch to HPT)

HP Task Completes

(Switch back to LPT)

LPT Execution Suspended (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Real-Time Kernel
Benefits

17

 A kernel:

– Enables Multitasking:

 Breaks (i.e. split) the application into simpler code

 Allows for easier system expansion

 Simplifies maintenance

 Allows different programmers to work on different aspects of the product

– Provides services to your application

– Allows you to prioritize the work done by the CPU

– Is responsive to real-time events

 Often deterministic

– Provides a ‘framework’ for your application

Real-Time Kernel
Drawbacks

18

 A kernel increases your code and RAM size

– Typ. 8K-24K bytes of Code, a few hundred bytes of RAM plus RAM

for task stacks

 A kernel add overhead

– Typically 2-4% of the CPU’s time

 A kernel possibly adds cost

– Commercial kernels typically require licensing

 A kernel requires reentrant functions

 A kernel will disable interrupts for critical sections

 You have to be careful with shared resources

– I’ll cover that in a different session

Next Class

19

 I’ll provide more details about task management:

– Task resources

– Task states

– Task stacks

 Setting the size

– Creating tasks

– Deleting tasks

– Changing the priority of a task at run-time

