
Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Debugging Real-time Embedded
Software – Hands-on

July 12th, 2016
Jacob Beningo, CSDP

Session 2: Foundational Debug Techniques

Embedded System Design Techniques™

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Course Overview

• Introduction to Debugging Real-time
Embedded Systems

• Foundational Debugging Techniques

• Debugging the ARM Cortex-M Microcontroller

• Utilizing Systems Viewers and Trace tools to
Debug Firmware

• Tips and Tricks for Debugging Embedded
Systems

2

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Session Overview

• Bug Classification

• Methods for Tracking Bugs

• Effective use of break-points

• Printf

• assert

3

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Bug Classification

4

Bohrbugs Heisenbugs

Schroedinbugs Mandelbugs

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Bug Severity

5

Severity Severity Level Severity Description

1 Critical

The module/product crashes or the bug causes non-
recoverable conditions. System crashes, GP Faults, or
database or file corruption, or potential data loss, program
hangs requiring reboot are all examples of this type.

2 High

Major system component unusable due to failure or
incorrect functionality. These bugs cause serious problems
such as a lack of functionality, or insufficient or unclear error
messages that can have a major impact to the user, prevents
other areas of the app from being tested, etc. Severity 2
bugs can have a work around, but the work around is
inconvenient or difficult.

3 Medium
Incorrect functionality of component or process. There is a
simple work around for the bug if it is Severity 3.

4 Minor Documentation errors or signed off severity 3 bugs

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Bug Fix Priority

6

Priority
ID

Priority Level Priority Description

5
Must Fix This bug must be fixed immediately; the product cannot ship

with this bug.

4
Should Fix These are important problems that should be fixed as soon as

possible. It would be an embarrassment to the company if
this bug shipped.

3
Fix When Have

Time
The problem should be fixed within the time available. If the
bug does not delay shipping date, then fix it.

2
Low Priority It is not important(at this time) that these bugs be addressed.

Fix these bugs after al other bugs have been fixed.

1
Trivial Enhancements that are good to have features but are

currently out of scope.

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Tracking Bugs

7

Best Solution to Track Bugs
1) Don’t track them (Fix them on the spot)

2) Use Bug tracking software

What to look for in a tracking system:
• Bug Categorization

• Bug Prioritization

• Bug Assignment and Status

• Reporting

• Project tracking integration

• Strong eco-system

Examples:
• Bugzilla

• Mantis

• etc

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Bug Life Cycle

8

CC BY-SA 3.0

Derivative work:

CrazyTerabyte (talk)

Bugzilla_Lifecycle_color-

aqua.png:

User:Nyco

http://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/w/index.php?title=User:CrazyTerabyte&action=edit&redlink=1
https://commons.wikimedia.org/wiki/User_talk:CrazyTerabyte
https://commons.wikimedia.org/wiki/File:Bugzilla_Lifecycle_color-aqua.png
https://commons.wikimedia.org/wiki/User:Nyco

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Breakpoint Debugging

9

Breakpoints – define instruction addresses so that when the processors gets to that

instruction, it stops there (enters halt or sometimes referred to as debug state)

• Hardware breakpoints

• Software breakpoints

Watchpoints – allows you to define data addresses so that when the processor accesses

this address location, it triggers a debug event that can be used to halt the processor

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Breakpoint Debugging

10

Two different types of breakpoints that can be used

- BKPT is a software breakpoint instruction that can be added to software.

o BKPT must be used carefully if the debug monitor is used. It cannot be

used in tasks and exception handlers with lower priorities. That means

no NMI or Hard Fault handler breakpoints!

o If BKPT is encountered when halt and debug monitor modes are

disabled, the processor will raise a hard fault exception.

- Breakpoint using the address comparators in the Flash Patch and

Breakpoint Unit (FPB). There are only 8 comparators, 6 of which can be

used for address breakpoints.

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Debugging w/ printf

11

printf provides a method for formatting and
outputting serial data.

#include <stdio.h>

printf("Hello World!");

printf("The value of x is %d", x);

printf("The value of x is %d, y is %d", x, y);

printf("The value of pi is %3.2f", 3.14);

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Debugging w/ printf

12

• Have to pull in standard library

• ROM and RAM usage will increase

• Simple printf statements can affect the real-
time performance of the system

• Limited number of printf's that can be added
to a system

• Requires changing code to get useful data out
during a debug session

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

printf Setup

13

Setup options

• Use system services (libraries)

• Use UART

• Driver

• Application code

• Use ITM

• Transmission Type

• Blocking

• Non-blocking

• printf("Hello	World!");

– 12.5	ms	

• printf("The	System	state	is	%d",	State);

– 21	ms	

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Assertions

14

An assertion is a Boolean expression at a specific point in a program that will be

true unless there is a bug in the program.

• improve testing

• bugs are easier to detect

• execution stops at them

• can serve as executable comments

• improve code quality

• can be turned on and off

Pros of ASSERT() Cons of ASSERT()

• slow down code execution

• commonly misunderstood

• used improperly for error handling

• use string that require RAM/ROM

• require printf and a terminal

• can be turned on and off

What is the difference between a bug and an error condition?

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Assertions

15

Improper Use:

Mistakes:

Proper Use:

• If the expression is true, execution continues normally

• If the expression is false, whatever happens is "undefined"

void CalculateDistance(uint8_t Velocity)

{

ASSERT(Velocity < 150);

}

int result = Open("MyFile.txt", 'r');

ASSERT(result != NULL);

ASSERT(result = 14);

ASSERT(VelocitySet(50) < VELOCITY_MAX);

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Assertions Setup

16

Steps to Setup assert

1. Setup serial interface

2. Setup printf

3. Include assert.h

4. Enable assertions

5. Sprinkle assertions through-out code base

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

Additional Resources
• Download Course Material for

– Updated C Doxygen Templates (Sept 2015)

– Example source code

– Templates

– YouTube Videos

• Microcontroller API Standard

• EDN Embedded Basics Articles

• Embedded Bytes Newsletter
– http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > Debugging Realtime Embedded Systems

17

http://bit.ly/1BAHYXm
http://www.beningo.com/

Presented by:

© 2015 Jacob Beningo

All Rights Reserved

The Lecturer – Jacob Beningo

Jacob Beningo
Principal Consultant

: jacob@beningo.com

: 248-719-6850

: Jacob_Beningo

: Beningo Engineering

: JacobBeningo

: Embedded Basics

Social Media / Contact CONSULTING

• Secure Bootloaders

• Code Reviews

• Architecture Design

• Real-time Software

• Expert Firmware

Analysis

EMBEDDED TRAINING

www.beningo.com

18

