Programmable Logic Controllers: Hands On Introduction to Industrial Controls Class 2: PLC Bit Instruction Basics March 28, 2017 – Don Wilcher

PLC Bit Instruction Basics

Topics

- PLC Bit Instructions
- Introduction to Basic Logic Gates
- Setting up the Velocio "vBuilder" software (Ladder Logic)
- Hands-On Project: Bit Instruction Logic Based Controllers

Bit Instructions can be divided into two broad categories:

- Input
- Output

Input Instruction is a contact.

Output Instruction is a coil.

Input Instruction is a contact.

Output Instruction is a coil.

PLC Bit Instructions... Contacts and Coils used in an Electrical Control Circuit.

Switch open and coil de-energized

Switch closed and coil energized

DesignNews

Image Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

5

Question 1

Input Instruction is coil and Output Instruction is contact.

- a) True
- b) False

When programming PLCs, the following bit instructions are used.

- Examine If Closed (XIC)
- Examine If Open (XIO)
- Output Energize (OTE)

Examine If Closed or *Examine ON* instruction is associated with a physical input being set to binary logic **1** with a voltage being present

- Examine If Closed (XIC) Examine If Closed or *Examine ON* instruction is associated with a physical input being set to binary logic 1 with a voltage being present
- Examine If Open (XIO)

Examine If Open or *Examine OFF* instruction is associated with a physical input being set to binary logic **0** with a no voltage being present.

 Output Energize (OTE) Output Energize instruction is associated with a physical output being set to binary logic 1 with a voltage being present.

• Examine If Closed (XIC) Bit Instruction

-1[-

• Output Energize (OTE) Bit Instruction

()

Relationship between Electronic, Industrial Control Symbols and PLC Bit Instructions

PLC Bit Instructions are arranged in

- A series of logical rungs.
- •The logical rungs operate based on the physical input and output binary values.
- •The logical rungs are called a Ladder Logic Program.

Question 2

A Photoswitch wired to a PLC would use what type of Bit Instruction.

- a) XIO
- b) XIC
- c) a & b
- d) OTE
- e) None of the above

Comparison of Hardwired Relay Control Circuit with Ladder Logic Program

Image Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

Presented by:

DesignNews

Ladder Logic language is the most commonly used PLC programming language and is designed to mimic hardwired relay logic.

Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

Question 3

On slide 13, CR2 represents what type of bit instruction.

- a) XIO
- b) XIC
- c) a & b
- d) OTE
- e) None of the above

Introduction to Basic Logic Gates

A *logic gate* is a circuit with several inputs but only one output that is activated by particular combinations of input conditions.

Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

Introduction to Basic Logic Gates...

An AND gate is a device with two or more inputs and one output.

An OR gate can have any number of inputs but only one output.

Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

Introduction to Basic Logic Gates...

The NOT function can have only one input.

Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011

Introduction to Basic Logic Gates...

Practical Examples of Logic Gates:

The high beam light can be turned on only when the light switch AND the high beam switch are closed.

The dome light will be turned on whenever the passenger door switch OR the driver door switch is activated.

Source: Programmable Logic Controllers, 4th Ed., McGraw Hill, 2011 **DesignNews**

Question 4

Provide a practical example of device or system that performs the NOT Function.

Setting Up the Velocio "vBuilder" Software (Ladder Logic)

Reference

http://velocio.net/vbuilder/

Setting Up the Velocio "vBuilder" Software...

New Project		x
Flow Chart O Ladder Logic		
Name		
Anti_Tie_Drill		
Path		
J:\Bevill_State\INT184_PLCs\Velocio_Projects	Browse	
✓ Create Directory for Project		
OK Cancel Help		

Creating the Ladder Logic program for a Anti-Tie Down Controller.

Setting Up the Velocio "vBuilder" Software...

👸 File Edit Window Tools Help											
·····································											
Setup		A	В) C	D	E	F	G	H	Toolbox	
Setup Setup Hardware Solution Logs Name #df Anti_Tie_Drill % (Add Subroutine)	1 1 1 1 2 3 4 5 6		B			E	F	G		Toolbox Wire ↓	
										Subroutine	

The Ace 22 PLC Hardware setup is complete.

Small Drill Press with Anti-Tie Down Controls

🧭 Tags					_	o ×
Input / Output	Name		Signal	Debounce (ms.)	Used	Modbus
Input bit	PART_SENSOR		B1	0		
	SWITCH_A	ŏ	B2	0		
Output bit	SWITCH_B	ŏ	B3	0		
Output ui16	InBitB4	ŏ	B4	0		
Register	InBitB5	ŏ	B5	0		
	InBitB6	ŏ	B6	0		
(116	InBitC1	ŏ	C1	0		
ui16	InBitC2	ŏ	C2	0		
(132	InBitC3	ŏ	C3	0		
Float	InBitC4	Õ	C4	0		
	InBitC5	Õ	C5	0		
	InBitC6	Ō	C6	0		

Creating Tags PART_SENSOR, SWITCH_A, AND SWITCH_B

Toolbox
Wire
$\mathbf{H} \in \mathbf{H} $
EEEE
(∃=E) (J≠E)
(HOR)

Three Normally Open Contacts (XIC) will be used in the program.

Select the PART_SENSOR Tag for the bit instruction.

Select the remaining XIC bit instructions with their appropriate Tags and place them on the ladder logic rung.

Input / Output	Name		Signal		Used	Remote Writable	Modbus	
Input bit	DRILL_MOTOR		D1					
(Input Float	OutBitD2		D2					
Output bit	OutBitD3		D3					
Output ui16	OutBitD4		D4					
Register	OutBitD5		D5					
ui8	OutBitD6		D6					
(116	OutBitE1		E1					
ui16	OutBitE2		E2					
(<u>i32</u>)	OutBitE3		E3					
Float	OutBitE4		E4					
	OutBitE5		E5					
	OutBitE6	\bigcirc	E6					
OK Cancel Help								

Creating Tag DRILL_MOTOR

One coil (OTE) will be used in the program.

Select the DRILL_MOTOR Tag for the OTE bit instruction.

The Anti Tie Down Controller PLC Ladder Logic is completed.

Question 5

What basic logic function will be performed by the Anti Tie down Controller?

Hands-On Project: Bit Instruction Based Logic Controller

Presented by:

DesignNews

Hands-On Project: Bit Instruction Based Logic Controller

Electrical Wiring Diagram

Solid State Relay (SSR) FAQs

SSRs are widely used in industrial control circuits for operating electric heaters, solenoid, motor, and lighting fixtures.

Advantages.

- small in size.
- fast switching speeds.
- •can isolate low voltage/current circuits from high voltage/current electrical loads.

Solid State Relay (SSR) FAQs... Disadvantage.

 small leakage that occurs when the SSR is turned off (de-energize). Device stays on (energize)
SSR Types.

- AC or DC devices (input/output signals).
- •Use an internal optical emitter –detector pair for isolating low voltage/current circuits from high voltage/current loads.

•BJTs, SCRs, or Triacs are commonly used as the switching components for output control.

Solid State Relay (SSR) FAQs...

Solid State Relay DC Input Control Circuits:

http://www.electronics-tutorials.ws/power/solid-state-relay.html

DesignNews

Running the Anti Tie Down Controller Ladder Logic Program

👔 File Edit Wir	ndow	Tools He	lp								
·····································											
Setup			A	В	СС	(D)	E	F	G	(H)	
Setup Ace 22 Setup Hardware Solution Logs Name #of Anti_Tie_Dril % (Add Subroutine)	Rung #2 Rung #1	2	A	B PART_SENSOR			E	F	G	H	
		4 5 6									

Click the "Green" run button to operate the Anti Tie Down Controller with the Simulator switch.

DesignNews

Running the Anti Tie Down Controller Ladder Logic Program

Anti-Tie Down Controller in operation!

Presented by:

DesignNews

Question 6

What disadvantage is presented by a SSR?

DesignNews