Embedded System Design Techniques™

Bootloader Design for MCUs

Session 4: Bootloader Implementation

January 28th, 2016 Jacob Beningo, CSDP

© 2015 Jacob Beningo All Rights Reserved

Course Overview

- Bootloader Models and Concepts
- Protocol Design

2

- Setting up a Test Application
- Bootloader Implementation
- Troubleshooting Techniques

Session Overview

- Bootloader System Review
- Start-up Branching
- Startup Checks

3

- Assembling the Image
- Resetting the Image

Presented by:

Bootloader System Review

DesignNews

4

© 2015 Jacob Beningo All Rights Reserved

Advantages	Disadvantages
Code can be in assembly	Susceptibility to start-up noise
Branch is executed quickly	Dedicated GPIO
Very simple implementation	Accidental bootloader entry

5

© 2015 Jacob Beningo All Rights Reserved

Example:

Assembly branch code

DesignNews ⁶	© 2015 Jacob Beningo All Rights Reserved
jmp main ;	Procented b
lds #StackTop	
GoBoot:	
jmp 0,x	; jump to the application
ldx AppResetVect	
Idd AppResetVect	; Load the Application Reset Vector
	; if PPO == 1 then start the application
brclr \$0259, \$01, GoBoot	; if PP0 == 0 then start the boot-loader

What is the potential flaw with the previous branch code?

Presented by:

Example:

Checking the reset vector

esignNews ⁸	© 2015 Jacob Beningo
jmp main	; Continue Boot-loader startup
lds #StackTop	
_GoBoot:	
jmp 0,x	; jump to the application
ldx AppResetVect	
	; available then start the bootloader
beq _GoBoot	; if the application reset vector is not
cpd #\$ffff	; Compare it to 0xFFFF
ldd AppResetVect	; Load the Application Reset Vector
	; if PPO == 1 then start the application
brclr \$0259, \$01, GoBoot	; if PP0 == 0 then start the boot-loader

• Example "Advanced" Check

)esignNews 9	© 2015 Jacob Beningo All Rights Reserved
jmp main	; Continue Boot-loader startup
lds #StackTop	
_GoBoot:	
Jmp U,x	; jump to the application
ldx AppResetVect	
	; boot-loader, otherwise continue to the application
beq _GoBoot	; if Status == 'B' for Boot-loader then jump to
cpd #'B'	; Compare it to 'B' for boot-load
Idd EepromProgStatu	s ; Read the programmed status byte from eeprom
	; available then start the bootloader
beq _GoBoot	; if the application reset vector is not
cpd #\$ffff	; Compare it to 0xFFFF
Idd AppResetVect	; Load the Application Reset Vector

bv:

• Integrating the branch code and the bootloader

Presented by:

CONTINUING

FDI

DIGI-Key

© 2015 Jacob Beningo All Rights Reserved

10

DesignNews

Startup Checks

DesignNews

11

Startup Checks

• Branch Code in C

```
if((Checksum Complete == TRUE) && (StartUpTmr == EXPIRED))
  ł
                                       /* Does app reset vector exist? */
    if((*ResetVector != 0xFFFF)
                                &&
      (Status != 'B')
                                 &&
                                       /* EEPROM status set? */
      (Boot ToolPresent != TRUE) && /* Tool present? */
      (Checksum_Valid != FALSE)) /* Checksum valid? */
      App_LoadImage();
    }
    else
      Boot_LoadImage();
                                                                                       Presented by:
                                  © 2015 Jacob Beningo
                  12
DesignNews
                                   All Rights Reserved
```

Assembling the Image

Requirements

- Command driven vs image driven
- Commands
 - Lock/Unlock Flash
 - Read/Write Configuration
 - Image/Record Data
 - Switch to Application
- Image Driven
 - Continuously loops through image
 - Completely Autonomous

Presented by:

DesignNews

13

Assembling the Image

- A block of image data is usually larger than can be directly communicated
- Memory region broken up into separate packets
- Packets need to be reassembled and validity checked
- Steps
 - Receive image packets
 - Reassemble into image block
 - Verify Checksum
 - Write
 - Acknowledge
- Repeat until completed

14

Presented by:

DesignNews

Assembling the Image

DesignNews

15

© 2015 Jacob Beningo All Rights Reserved

Resetting the System

- How to reset the system
 - Watchdog timer
 - Infinite loop
 - Illegal write to register
 - Soft reset command
 - Manual software reset
 - Notify user to power cycle


```
void Wdt_Reset(void)
{
    /* Enter an invalid key to force reset */
    SWT.SR.R = 0x0000FFFF;
}
Presented by:
Pr
```

Additional Resources

- Download Course Material for
 - Updated C Doxygen Templates (Sept 2015)
 - Example source code
 - Bootloader White Paper
 - Templates
- Microcontroller API Standard
- EDN Embedded Basics Articles
- Embedded Bytes Newsletter

From <u>www.beningo.com</u> under

Blog and Articles > Software Techniques > CEC Bootloader
 Design for MCUs

DesignNews

© 2015 Jacob Beningo All Rights Reserved

Jacob Beningo Principal Consultant

P.O. Box 400 Linden, Michigan 48451

www.beningo.com

Т

in

- i jacob@beningo.com
 - : 810-844-1522
- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo
- **EDN** : Embedded Basics

Newsletters

• Embedded Bytes

http://bit.ly/1BAHYXm

Training

- MicroPython
- Bootloaders
- Low Power Design
- Resume Workshop
- Embedded Techniques

Presented by:

DesignNews

