Secure Storage and Communications in IoT

Class 1: Security Concepts in the IoT

6/25/18 Warren Miller

Presented by:

This Week's Agenda

- 6/25/18 Security Concepts in the IoT
- 6/26/18 MCU-based Security Features
- 6/27/18 Implementation Examples- Storage
- 6/28/18 Implementation Examples- Communications
- 6/29/18 A Hands-on Design

Course Description

- The Internet of Things is connected
- Connected Things make it easy to steal...
- Must protect Storage
- Must protect Communications
- Must protect your IP!
- Lots of techniques are available to help you protect your IoT device

Today's Topics and Goals

• Security Threats

Understand them

- Cryptography
 - Know about key techniques and uses
- Your Designs...
 - Provide me with information for class on Friday

Threats are Real

- Additional tools become available every day
- Shodan, Metasploit, etc.

Responses to Threats

- Commercial Avionics
 - New DO-326, Airworthiness Security Process Specification
- Industrial
 - IEC61508
 - Security is now part of Functional Safety for any networked device
 - Over 100 field bus protocols
- Communications
 - Secure Boot enables proper operation of the nations communications infrastructure.
- Defense
 - Anti-tamper and Design Assurance

Presented by:

Threats to Your Hardware (Supply Chain)

- Counterfeit Devices
 - Devices remarked as a different part!
 - E-Waste as the source
 - Apply a flame to PCB
 - Treat devices to 'clean'
 - Remark and sell
- Fraud
 - Recovered devices
 - Correct devices marked as higher grade
 - Difficult to catch!

- SIA Reports on Counterfeiting show a growing threat
- Threat grows when parts are in short supply
- Need to manage purchasing
- Need to decommission devices

Presented by:

Threats to Your Hardware (Manufacturing and Deployment)

- Hardware Threats
 - Copying
 - Overbuilding
 - Cloning
 - Reverse Engineering
- Deployed Hardware Threats
 - Invasive Threats
 - Remote Threats
 - Upgrades, Boot code
 - Sensitive Data

Technology to Thwart Threats

- Typical Hardware (for this course)
 - MCU, FPGA, ASIC, Analog, Standard Devices, etc
 - All interconnected on a circuit board
 - Can be accessed when used in the field
- Thwarting Threats (Keep design secret)
 - MCU code, FPGA code, Flash memory contents
 - Secret keys, SRAM data, Data going on/off board
 - Devices used, Board layout, Tamper detection

Cryptography (Technique)

- Substitution Ciphers
- Each letter -> Another letter

• One Time Pad

 Pseudo Random Numbers

http://www.cryptograms.org/play.php

Modern Cryptography

- Standards
- Shared Secrets and Encryption/Decryption Algorithms
- Keys (Small- 256bits or so)
 - Symmetric and Asymmetric
- Standard Algorithms for Encrypt/Decrypt
 - One Way Functions with Trapdoor Information
 - The ideal- standards try to approach this ideal

Some Key Standards

- DES- Data Encryption Standard
- AES- Advanced Encryption Standard
- SHA- Secure Hash Algorithm
- Diffie-Hellman Key Exchange
- RSA- Rivest, Shamir, Adleman
 Public Key Cryptosystem
- ECC- Elliptic Curve Cryptography

AES Standard Overview

- A more recent standard for en/decryption
 - Rijndael Cipher: Selected by NIST in 2001
 - 128, 192 and 256 bits
 - Symmetric Key
- Substitution and permutation network
- Multiple repetitions based on key size
 10, 12 or 14 cycles
- High-speed, Low-RAM and hard/software ease

AES- Basic Operation Elements

AES- Typical Encryption Round

SHA

- Secure Hash Algorithm
 - Transforms a large data set into a small fixed length value
 - Avoid collisions so that an attacker can't craft data sets to replace a set with a known hash
 - Used for authentication
 - Bitcoin, software packages, passwords, messages
- NIST and FIPS, NSA designs
- SHA-1/2/3

Presented by:

Diffie-Hellman Exchange

- The problem with symmetric keys...
- Exchange shared keys over an insecure channel
 - Example with color
 - Example with primes using modulo arithmetic

	Alic	e		Bob		
Secret	Public	Calculates	Sends	Calculates	Public	Secret
а	p, g		ho,g ightarrow			b
а	p, g, A	$g^a \mod p = A$	$A \rightarrow$		p, g	b
а	p, g, A		<i>← B</i>	$g^b \mod p = B$	p, g, A, B	b
a, s	p, g, A, B	$B^a \mod p = s$		$A^b \mod p = s$	p, g, A, B	b, s

RSA

- Public-Key Cryptosystem
 - Encryption key is public
 - Decryption key is secret
- Based on the difficulty in factoring the product of two large prime numbers
- "Math Trick" simplifies decryption using prime factors

ECC

• Different "Intractable Problem"

- Elliptic Curve Arithmetic
- Much smaller key size for the same security
 3027-bit RSA vs. 256bit ECC

Presented by:

Addition

(X + Y) = Z'

Additional Resources

Previous Course: <u>http://www.designnews.com/lecture.asp?doc_id=269699</u> "Securing Your Embedded System"

Security Blog, Schneier on Security: <u>https://www.schneier.com</u>

Department of Homeland Security- Federal Network Resilience

SIA Report on Counterfeiting

Coursera Cryptography Courses: <u>www.coursera.org</u> (Search for Cryptography)

Digi-Key TechZone Article Library: MCUs , Securing MCU Designs, 11/06/2013

Presented by:

Optional No Cost HW and Software

Renesas Synergy Platform

<u>https://www.renesas.com/en-</u> <u>us/products/synergy/software/ssp.htm</u> <u>l</u>

Synergy AE-Cloud1 Kit

https://www.digikey.com/productdetail/en/renesas-electronicsamerica/YSAECLOUD1/YSAECLOUD1-ND/8342110

Project Page

https://www.renesas.com/enus/products/synergy/hardware/kits/ae -cloud1.html esignNews 21

This Week's Agenda

- 6/25/18 Security Concepts in the IoT
- 6/26/18 MCU-based Security Features

22

- 6/27/18 Implementation Examples- Storage
- 6/28/18 Implementation Examples- Communications
- 6/29/18 A Hands-on Design

