
Presented by:

Writing Neural Network Code:
Introduction to TensorFlow, Hands-On

May 15, 2020

Charles J. Lord, PE
President, Consultant, Trainer

Blue Ridge Advanced Design and Automation

1

Class 5: TensorFlow Hands-On Part 3:
Teaching and Testing and Conclusion

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

2

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

3

Presented by:

We’re Almost There!

• Yesterday, we defined our neural network as a
784|128|10 model with an added dropout
‘layer’ while training.

• We need to actually build (compile) this
network so that we can feed the parameters,
run the training data through, and check for
the differences

• For this last step we use an optimizer

4

Presented by:

Keras Optimizers

• SGD – gradient descent

• RMSprop – Moving average RMS

• ADAM – Adaptive Descent Method

• Adamax – ADAM on steroids

• ADAM with Nesterov momentum

• Adagrad – parameters that get changed more change less

• Adadelta – adaptive learning rate per dimension – more
robust version of adagrad

• Ftrl – algorithm that came from ad click-through optimization

5

https://keras.io/api/optimizers/

Question 1 – What does RMS stand for?

Presented by:

Manual Optimization

Instantiate an optimizer.

optimizer = tf.keras.optimizers.Adam()

Iterate over the batches of a dataset.

for x, y in dataset:

Open a GradientTape.

with tf.GradientTape() as tape:

Forward pass.

logits = model(x)

Loss value for this batch.

loss_value = loss_fn(y, logits)

Get gradients of loss wrt the weights.

gradients = tape.gradient(loss_value, model.trainable_weights)

Update the weights of the model.

optimizer.apply_gradients(zip(gradients, model.trainable_weights))

6

Presented by:

Keras to the Rescue

• We don’t have to be concerned with the
internals when we use the high-level controls
built into TensorFlow 2 (unless we want or
need the extra control)

• When we compile a network, we define the
optimizer we want to implement and use the
model.fit method to go and do the actual
training.

• But first, we need to determine the loss model:

7

Presented by:

class BinaryCrossentropy: Computes the cross-entropy loss between true labels and predicted labels.

class CategoricalCrossentropy: Computes the crossentropy loss between the labels and predictions.

class CategoricalHinge: Computes the categorical hinge loss between y_true and y_pred.

class CosineSimilarity: Computes the cosine similarity between y_true and y_pred.

class Hinge: Computes the hinge loss between y_true and y_pred.

class Huber: Computes the Huber loss between y_true and y_pred.

class KLDivergence: Computes Kullback-Leibler divergence loss between y_true and y_pred.

class LogCosh: Computes the logarithm of the hyperbolic cosine of the prediction error.

class Loss: Loss base class.

class MeanAbsoluteError: Computes the mean of absolute difference between labels and predictions.

class MeanAbsolutePercentageError: Computes the mean absolute percentage error between y_true
and y_pred.

class MeanSquaredError: Computes the mean of squares of errors between labels and predictions.

class MeanSquaredLogarithmicError: Computes the mean squared logarithmic error between y_true and
y_pred.

class Poisson: Computes the Poisson loss between y_true and y_pred.

class Reduction: Types of loss reduction.

class SparseCategoricalCrossentropy: Computes the crossentropy loss between the labels and
predictions.

class SquaredHinge: Computes the squared hinge loss between y_true and y_pred.

8

tf.keras.losses.xx

Presented by:

Our Code from Yesterday

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10)

])

predictions = model(x_train[:1]).numpy()

print(predictions)

print(tf.nn.softmax(predictions).numpy())

9

Presented by:

Our New Code

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

loss_fn(y_train[:1], predictions).numpy()

model.compile(optimizer='adam',

loss=loss_fn,

metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test, verbose=2)

10

Presented by:

11

Presented by:

Output

12

97.85% Accurate

Question 2 – What was our approximate accuracy after one pass?

Presented by:

Hello World!

• We have our working network!

• But can we do better?

– What if we have 200 hidden nodes?

– What if we use linear instead of ReLu?

– What if we optimize using SGD?

– What if we use CategoricalCrossentropy for loss?

• This is where the fun starts!

13

Presented by:

Plugging these changes in…

• Original: 97.85%

• 200 hidden nodes: 98.11%

• linear activation function: 91.85%

• optimize using SGD? 92.42%

• CategoricalCrossentropy for loss: 97.74%

• The only change that made any sort of positive
difference was almost doubling the hidden nodes –
at twice the computational time!

14

Presented by:

CPU versus GPU

• A simple test can be done in Colab to compare
typical performance between a CPU and GPU

• You can perform the same test if you have
both processors in your development or target
system – but you usually don’t

https://colab.research.google.com/notebooks/gpu.ipynb

15

Presented by:

TPU

• Tensor Processing Unit

• ASIC developed by Google

• Optimized for TensorFlow

• Colab has a TPU available but no CPU vs GPU
vs TPU benchmarks yet

https://colab.research.google.com/notebooks/tpu.ipynb

16

Presented by:

Google Coral TPU
(tensor processing unit)

MediaTek 8167s SoC
(Quad-core Arm Cortex-A35)

IMG PowerVR GE8300
(integrated in SoC)

Google Edge TPU coprocessor

2 GB DDR3L

8 GB eMMC

Typical RPi-type I/O

Announced at CES2020, still
“coming soon”

17

Presented by:

NVIDIA Jetson Nano

GPU 128-core Maxwell

CPU Quad-core ARM A57
@ 1.43 GHz

Memory 4 GB 64-bit
LPDDR4 25.6 GB/s

Storage microSD (not
included)
$120

18

https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/102110417/1597-102110417-ND

Presented by:

https://docs.nvidia.com/deeplearning/frameworks/pdf
/Install-TensorFlow-Jetson-Platform.pdf

• Latest Version

• April 2020

• Installs in the linux
distribution for the
Nano

• NVIDIA also has open
source TensorRT that is
optimized for the Jetson
architecture

19

Presented by:

TensorFlow on the Nano

https://docs.nvidia.com/deeplearning/frameworks

/install-tf-jetson-platform/index.html

https://developer.nvidia.com/embedded/community/jetson-
projects

20

Question 3 – Any experience with the Jetson Nano (or other GPU board)?

Presented by:

Solution of the Month (timely!)

21

Presented by:

Don’t get so close to me….

22

Presented by:

23

Presented by:

24

Presented by:

Tensorflow on RPi

25

https://www.tensorflow.org/install/source_rpi

Presented by:

TensorFlow Lite on RPi

26

https://www.tensorflow.org/lite/guide/build_rpi

Presented by:

Conclusion

• We have just glanced at the tip of the iceberg

• This is not an exact science (actually it is but
the math is beyond where we typically talk)

• Trial, error, experimentation is the way to
become proficient – more than ‘book
learning’

• You now have the tools to go make trouble –
go forth and convolute! (break some eggs!)

27

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

28

Presented by:

Coming Up Next!

• Our next course titled “Building Machine
Vision Applications using OpenMV” will take
place June 8-12 with Jacob Beningo.

• For more information and to sign up for the
course, go to the curriculum calendar.

29

Question 4 – What future classes would you like to see?

Presented by:

Please stick around as I answer
your questions!

• Please give me a moment to scroll back through the
chat window to find your questions

• I will stay on chat as long as it takes to answer!

• I am available to answer simple questions or to
consult (or offer in-house training for your company)
c.j.lord@ieee.org
http://www.blueridgetechnc.com
http://www.linkedin.com/in/charleslord
Twitter: @charleslord
https://www.github.com/bradatraining

30

