
Presented by:

Writing Neural Network Code:
Introduction to TensorFlow, Hands-On

May 14, 2020

Charles J. Lord, PE
President, Consultant, Trainer

Blue Ridge Advanced Design and Automation

1

Class 4: TensorFlow Hands-On Part 2:
Defining and Building Your Network

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

2

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

3

Presented by:

Hello World in TensorFlow

• The traditional “Hello World” in computerese
is print(“Hello World”);

• The traditional “Hello World” in embedded is
<clr GPIO3.2>

• The traditional “Hello World” in neural
networks is to train, test, and execute the
MNIST data set.

4

Presented by:

5

Question 1 – What is the difference between the two outputs?

Presented by:

What IS the MNIST

• Modified National
Institute of Standards
and Technology
database

• Original database was
half census workers’
writing and half HS
students

• MNIST is a mixture of
both

6

60,000 training images

10,000 testing images

28x28 pixels, 256 bits each

http://yann.lecun.com/exdb/mnist/

Presented by:

Want to add characters? EMNIST

• Cohen et al at Western Sydney 2017

• Alphanumeric database

• Upper and Lower case

• 240,000 training

• 40,000 testing

• Over 500 writers

• Can be sorted by writer, page, field
• https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist

7

Presented by:

Models

• MNIST is the typical demonstration dataset
but there are many many more.

• Many of these are available directly through
TensorFlow

• Not part of the code – downloaded as needed

• Audio, Image, Image classification, Object
detection, text, etc

• Current list always at tfds.list_builders()

8

Presented by:

9

https://colab.research.google.com/github/tensorflow/datasets/blob/master/docs/overview.ipynb

Presented by:

To load a training database

• Remember that TF2 includes many keras
extensions

• Keras.datasets both loads the datasets but
includes the operations for loading sections of
the database, whether for training, testing, or
other uses

• We load the datasets into tensors

10

Presented by:

Loading the MNIST

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) =
mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

we just converted the original data from
integer to floating point

11

Presented by:

In Jupyter (Colab)

12

Presented by:

Building a Network

• Keras also adds extremely powerful tools for
building a neural network

• To process the MNIST database we need the
following:

– Inputs from a 28x28 matrix

– 10 outputs to signify the probability of each digit

– At least one hidden layer

13

Presented by:

Overfitting

• An important consideration
when training a network is
the concept of overfitting

• In regression, this is making
a model that fits one
example too perfectly,
making its fit worse for
other models

• In training a NN, we
typically introduce random
‘dropouts’ or noise

14

Presented by:

How Big a Hidden Layer(s)?

• There are few ‘hard and fast’ rules to the size and
number of hidden layers

• The more complex and varied, the more you may
need additional layers

• For a single hidden layer, N should be between the
size of the input and the output

• The larger the N, the longer calculations take

• We will pick 128 for now (784 > 128 > 10)

15

Question 2 – Can we do without a hidden layer? When?

Presented by:

keras.layers

• The models.Sequential method stacks a series of
network layers into a single model

• Each layer can be one of many types – we will use
three in our model:

– Flatten takes a 2-D array (such as an image) and ‘flattens’ it
out into a vector

– Dense creates a densely connected (traditional) layer of
nodes

– Dropout is used to create the random dropouts to help
prevent overfitting

16

Presented by:

Our Initial Code

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10)

])

17

Presented by:

We Need Output!

• Keras has powerful training and model API

• Uses numpy arrays

predictions=model(x_train[:1]).numpy()

- gives us the raw predicted output (‘logits’)

• We can then feed these into Softmax to create
our ‘probabilities’ for each output

tf.nn.softmax(predictions).numpy()

18

Presented by:

Our code so far

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10)

])

predictions = model(x_train[:1]).numpy()

print(predictions)

print(tf.nn.softmax(predictions).numpy())

19

Presented by:

PyCharm – Use our venv

20

Presented by:

21

Presented by:

The Output

[[0.05303392 0.0802143
0.15128678 0.16979037
0.15091117 0.08144777

0.11463938 0.07014603
0.04761226 0.08091807]]

• The values are all over
the place, but average
0.1 (1/10)

• The model is not
trained, of course!

• Weights and biases are
set to normalized
random values

22

Presented by:

Looking at MNIST Record Structure

import tensorflow as tf

import tensorflow_datasets as tfds

ds = tfds.load('mnist', split='train', shuffle_files=True)

assert isinstance(ds, tf.data.Dataset)

print(ds)

23

Presented by:

Results

24

<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

Presented by:

Tomorrow!

• We built our neural network – now to train
and test it!

• We will look at some basics of speeding the
network up

• A bit on optimization

• Porting TF to other processors

25

Question 3 – What applications are you [considering] building?

Presented by:

This Week’s Agenda

5/11 A Brief History of Artificial Neural Networks

5/12 Neural Network Simulation and Programming

5/13 TensorFlow Hands-On Part 1: Hello World!

5/14 TensorFlow Hands-On Part 2: Defining and Building

Your Network

5/15 TensorFlow Hands-On Part 3: Teaching and Testing

and Conclusion

26

Presented by:

Please stick around as I answer
your questions!

• Please give me a moment to scroll back through the
chat window to find your questions

• I will stay on chat as long as it takes to answer!

• I am available to answer simple questions or to
consult (or offer in-house training for your company)
c.j.lord@ieee.org
http://www.blueridgetechnc.com
http://www.linkedin.com/in/charleslord
Twitter: @charleslord
https://www.github.com/bradatraining

27

