Writing Neural Network Code: Introduction to TensorFlow, Hands-On

Class 4: TensorFlow Hands-On Part 2: Defining and Building Your Network

May 14, 2020

Charles J. Lord, PE President, Consultant, Trainer Blue Ridge Advanced Design and Automation

1

This Week's Agenda

- 5/11 A Brief History of Artificial Neural Networks
- 5/12 Neural Network Simulation and Programming
- 5/13 TensorFlow Hands-On Part 1: Hello World!

2

DesignNews

- 5/14 TensorFlow Hands-On Part 2: Defining and Building Your Network
- 5/15 TensorFlow Hands-On Part 3: Teaching and Testing and Conclusion

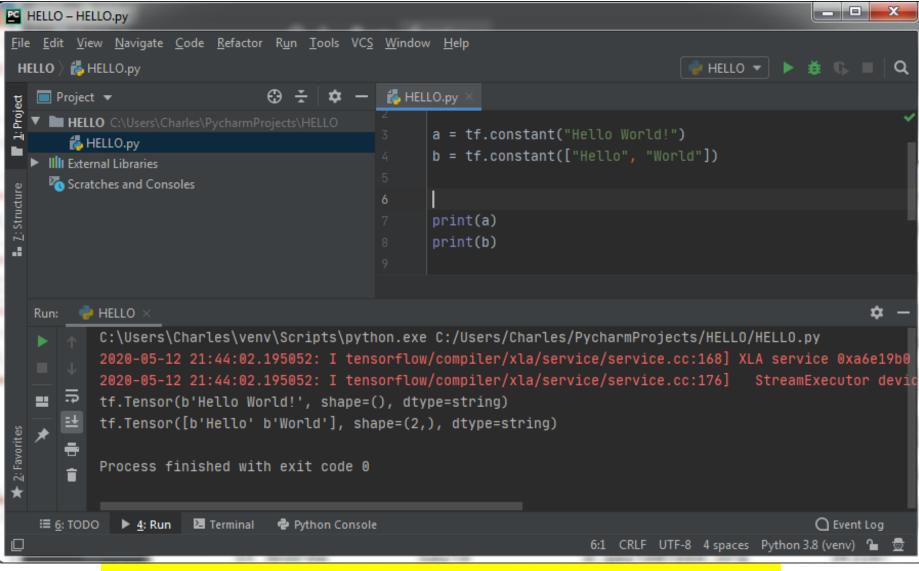
This Week's Agenda

- 5/11 A Brief History of Artificial Neural Networks
- 5/12 Neural Network Simulation and Programming
- 5/13 TensorFlow Hands-On Part 1: Hello World!

3

DesignNews

- 5/14 TensorFlow Hands-On Part 2: Defining and Building Your Network
- 5/15 TensorFlow Hands-On Part 3: Teaching and Testing and Conclusion


Hello World in TensorFlow

- The traditional "Hello World" in computerese is print("Hello World");
- The traditional "Hello World" in embedded is <clr GPIO3.2>
- The traditional "Hello World" in neural networks is to train, test, and execute the MNIST data set.

Question 1 – What is the difference between the two outputs?

What IS the MNIST

- Modified National Institute of Standards and Technology database
- Original database was half census workers' writing and half HS students
- MNIST is a mixture of both

22222 2222222 333333 3333 3 3 4844444444 55555555555555 6666666666 8 9999 ٩ 9 999 9 q

60,000 training images 10,000 testing images

28x28 pixels, 256 bits each

http://yann.lecun.com/exdb/mnist/

Presented by:

Want to add characters? EMNIST

- Cohen et al at Western Sydney 2017
- Alphanumeric database
- Upper and Lower case
- 240,000 training
- 40,000 testing
- Over 500 writers
- Can be sorted by writer, page, field
- https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist

Presented by:

Models

- MNIST is the typical demonstration dataset but there are many many more.
- Many of these are available directly through TensorFlow
- Not part of the code downloaded as needed
- Audio, Image, Image classification, Object detection, text, etc
- Current list always at tfds.list_builders()

Presented by:

https://colab.research.google.com/github/tensorflow/datasets/blob/master/docs/overview.ipynb

- Find available datasets

All dataset builders are subclass of tfds.core.DatasetBuilder. To get the list of available builders, uses tfds.list_builders() or look at our catalog.

╯ 'mr	ath_dataset', nist',	
	hist_corrupted,	
	ovie_rationales',	
	oving_mnist',	
	ulti_news',	
	ulti_nli',	
'mu	ulti_nli_mismatch',	
'na	atural_questions',	
'ne	ewsroom',	
'ns	synth',	
'on	mniglot',	
'op	pen_images_challenge2019_detection',	
	pen_images_v4',	
	pinosis',	
_	xford flowers102',	
	xford iiit pet',	
	ara crawl',	
	atch_camelyon',	
	et finder',	
-	laces365 small',	
_	lant leaves',	
	lant village',	
	lantae k'.	

DesignNews

Presented by:

ING

To load a training database

- Remember that TF2 includes many keras extensions
- Keras.datasets both loads the datasets but includes the operations for loading sections of the database, whether for training, testing, or other uses
- We load the datasets into tensors

Loading the MNIST

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) =
mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

we just converted the original data from integer to floating point

DesignNews

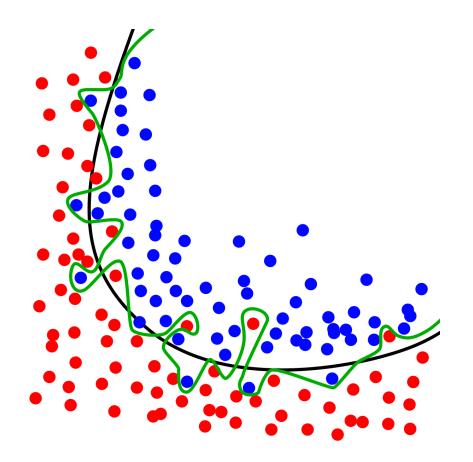
In Jupyter (Colab)

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

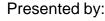
DesignNews

Building a Network


- Keras also adds extremely powerful tools for building a neural network
- To process the MNIST database we need the following:
 - Inputs from a 28x28 matrix
 - 10 outputs to signify the probability of each digit
 - At least one hidden layer

Overfitting

- An important consideration when training a network is the concept of overfitting
- In regression, this is making a model that fits one example too perfectly, making its fit worse for other models
- In training a NN, we typically introduce random 'dropouts' or noise



How Big a Hidden Layer(s)?

- There are few 'hard and fast' rules to the size and number of hidden layers
- The more complex and varied, the more you may need additional layers
- For a single hidden layer, N should be between the size of the input and the output
- The larger the N, the longer calculations take
- We will pick 128 for now (784 > 128 > 10)

Question 2 – Can we do without a hidden layer? When?

keras.layers

- The models.Sequential method stacks a series of network layers into a single model
- Each layer can be one of many types we will use three in our model:
 - Flatten takes a 2-D array (such as an image) and 'flattens' it out into a vector
 - Dense creates a densely connected (traditional) layer of nodes
 - Dropout is used to create the random dropouts to help prevent overfitting

Our Initial Code

import tensorflow as tf

mnist = tf.keras.datasets.mnist

```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
```

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

DesignNews

17

We Need Output!

- Keras has powerful training and model API
- Uses numpy arrays predictions=model(x_train[:1]).numpy()
- gives us the raw predicted output ('logits')
- We can then feed these into Softmax to create our 'probabilities' for each output tf.nn.softmax(predictions).numpy()

Our code so far

import tensorflow as tf

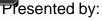
mnist = tf.keras.datasets.mnist

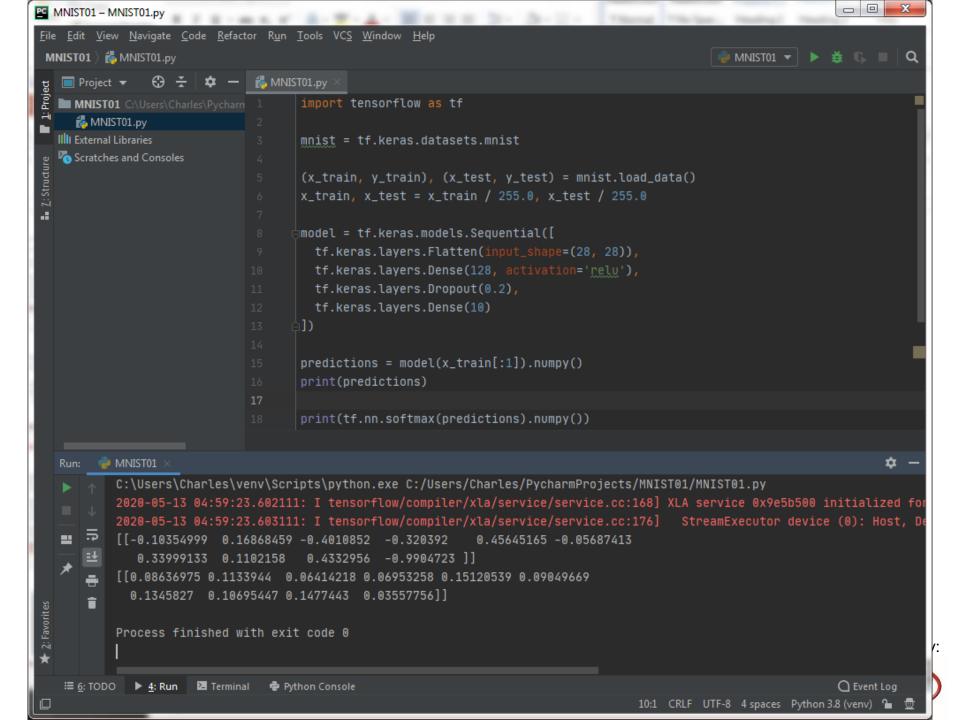
(x_train, y_train), (x_test, y_test) = mnist.load_data()

```
x_train, x_test = x_train / 255.0, x_test / 255.0
```

```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
print(predictions)
print(tf.nn.softmax(predictions).numpy())
```

DesignNews




19

PyCharm – Use our venv

Create Project				
Location: C:\Users\Charles\PycharmProjects\MNIST01				
▼ Project Interpreter: Python 3.8 (venv)				
New environme	nt using 🛛 🙀 Virtualenv 🚽			
	C:\Users\Charles\MNIST01			
	C:\Users\Charles\AppData\Local\Programs\Python\Python38\python.exe			
Inherit global site-packages				
Make available to all projects				
Existing interpreter				
Interpreter:	Python 3.8 (venv) C:\Users\Charles\venv\Scripts\python.exe 🔹 🗾			
	Create			
lews				

DesignNews

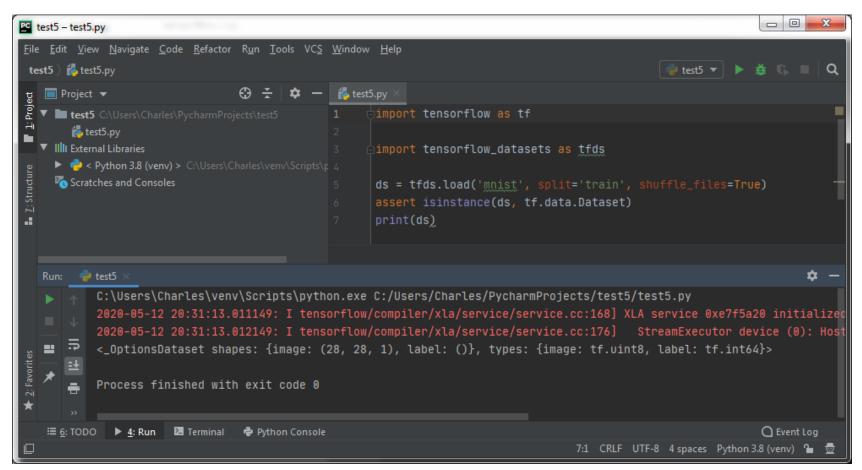
The Output

[[0.05303392 0.0802143
0.15128678 0.16979037
0.15091117 0.08144777

0.11463938 0.07014603 0.04761226 0.08091807]]

- The values are all over the place, but average 0.1 (1/10)
- The model is not trained, of course!
- Weights and biases are set to normalized random values

Looking at MNIST Record Structure


import tensorflow as tf

import tensorflow_datasets as tfds

ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)

Results

<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

Presented by:

Tomorrow!

- We built our neural network now to train and test it!
- We will look at some basics of speeding the network up
- A bit on optimization
- Porting TF to other processors

Question 3 – What applications are you [considering] building?

This Week's Agenda

- 5/11 A Brief History of Artificial Neural Networks
- 5/12 Neural Network Simulation and Programming
- 5/13 TensorFlow Hands-On Part 1: Hello World!

26

DesignNews

- 5/14 TensorFlow Hands-On Part 2: Defining and Building Your Network
- 5/15 TensorFlow Hands-On Part 3: Teaching and Testing and Conclusion

Please stick around as I answer your questions!

- Please give me a moment to scroll back through the chat window to find your questions
- I will stay on chat as long as it takes to answer!
- I am available to answer simple questions or to consult (or offer in-house training for your company) c.j.lord@ieee.org http://www.blueridgetechnc.com http://www.blueridgetechnc.com
 http://www.linkedin.com/in/charleslord
 Twitter: @charleslord
 https://www.github.com/bradatraining

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

