
Presented by:

Building Machine Vision
Applications using OpenMV

June 11, 2020
Jacob Beningo

Class 4: Utilizing Machine Learning to
Detect Objects

Presented by:

Course Overview

2

Topics:

• Introduction to Machine Vision and OpenMV

• Writing our First OpenMV Application

• Working with the OpenMV I/O

• Utilizing Machine Learning to Detect Objects

• Designing a Machine Vision Application

Presented by:

Session Overview

• Introduction

• Machine Learning

• Image Classification Example

3

Presented by:

Introduction

4

• Running ML framework on Cortex-M systems is
impractical

• Need to run bare-metal code to efficiently use the
limited resources

• TFLu: Tensor Flow Lite for Microcontrollers

• CMSIS-NN: optimized low-level NN functions for
Cortex-M CPUs

• CMSIS-NN APIs may also be directly used in the
application code

Presented by:

Introduction

5

Presented by:

Datasets

6

D
at

as
et

 S
iz

e
 (

sa

m
p

le
s)

100

101

102

103

104

105

106

107

108

109

1900 1950 1985 2000 2015

Criminals

IRIS

T vs. G vs. F

Rotated T vs. G

Canadian
Hansard

WMT

ImageNet 10k

ImageNet

MNIST CIFAR-10

Sports-1M

ILSVRC 2014Public SVHN

Presented by:

Datasets

CIFAR-10 is a collection of 60,000 images, each at 32-pixel by 32-
pixel from 10 image classes that include:
• Airplanes

• Cars

• Birds

• Cats

• Deer

• Dogs

• Frogs

• Horses

• Ships

• Trucks

7

Source: researchgate.net

Presented by:

ML Libraries and Frameworks

8

Software Libraries

Theano

PyLearn2

Torch

DistBelief

Caffe

MXNet

TensorFlow

Presented by:

CMSIS-NN
• CMSIS-NN: collection of optimized neural network functions

for Cortex-M CPUs

• Key considerations:
– Improve performance using SIMD instructions

– Minimize memory footprint

– NN-specific optimizations: data-layout and offline weight reordering

9

Presented by:

Hardware

10

Presented by:

Image Classification Example

1. From the top menu, click Tools -> machine learning
-> CNN Network Library

2. In the pop-up window, navigate to CMSIS-NN ->
cifar10

3. Click the cifar10.network file and select open

4. Another window will pop-up. This window is asking
where to save the selected file. Navigate to the
OpenMV mass storage device drive that appeared
when you connected the camera. Click save.

11

Presented by:

Image Classification Example

12

Presented by:

Image Classification Example

13

CIFAR-10 Search Whole Window Example

#

CIFAR is a convolutional neural network designed to classify its field of

view into several different object types and works on RGB video data.

#

In this example, we slide the LeNet detector window over the image and get

a list of activations where there might be an object. Note that using a CNN

with a sliding window is extremely compute expensive, so for an exhaustive

search do not expect the CNN to be real-time.

import sensor, image, time, os, nn

Presented by:

Image Classification Example

14

sensor.reset() # Reset and initialize the sensor.

sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565

sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)

sensor.set_windowing((128, 128)) # Set 128x128 window.

sensor.skip_frames(time=750) # Don't let autogain run very long.

sensor.set_auto_gain(False) # Turn off autogain.

sensor.set_auto_exposure(False) # Turn off whitebalance.

Presented by:

Image Classification Example

15

Load the cifar10 network (You can get the network from OpenMV IDE).

net = nn.load('/cifar10.network')

Faster, smaller and less accurate.

net = nn.load('/cifar10_fast.network')

labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

clock = time.clock()

while(True):

clock.tick()

img = sensor.snapshot()

Presented by:

Image Classification Example

16

net.search() will search an roi in the image for the network

(or the whole image if the roi is not specified). At each location to

look in the image if one of the classifier outputs is larger than

threshold the location and label will be stored in an object list and

returned. At each scale the detection window is moved around in the ROI

using x_overlap (0-1) and y_overlap (0-1) as a guide.

If you set the overlap to 0.5 then each detection window will overlap

the previous one by 50%. Note the computational workload goes WAY up

the more overlap. Finally, for mult-scale matching after sliding the

network around in the x/y dimensions the detection window will shrink

by scale_mul (0-1)down to min_scale (0-1). For example, if scale_mul is

0.5 the detection window will shrink by 50%.

Note that at a lower scale there's even more area to search if

x_overlap and y_overlap are small... contrast_threshold skips running

the CNN in areas that are flat.

Presented by:

Image Classification Example

17

for obj in net.search(img, threshold=0.6, min_scale=0.5, scale_mul=0.5, \

x_overlap=0.5, y_overlap=0.5, contrast_threshold=0.5):

print("Detected %s - Confidence %f%%"% (labels[obj.index()],\

obj.value()))

img.draw_rectangle(obj.rect(), color=(255, 0, 0))

print(clock.fps())

Presented by:

Additional Resources

• Beningo.com
– Blog, White Papers, Courses

– Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

• OpenMV.io

From www.beningo.com under

- Blog > CEC – Building Machine Vision Applications using
OpenMV

18

http://bit.ly/MicroPythonProjects
http://bit.ly/1BAHYXm
https://openmv.io/
http://www.beningo.com/

