Securing IoT Devices using Arm TrustZone®

Class 1: Understanding Embedded System Security

November 26, 2018 Jacob Beningo

Presented by:

DesignNews

Course Overview

Topics:

- Understanding Embedded System Security
- Introduction to Arm TrustZone[®]
- Creating your First TrustZone Application
- Designing and Debugging a Secure Boot Solution
- Securing a RTOS Application with TrustZone

The Lecturer – Jacob Beningo

Jacob Beningo

Principal Consultant

Social Media / Contact

- : jacob@beningo.com
- : 810-844-1522
- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo

in

DN : Embedded Basics

***ARM** Connected Community

Consulting

- Advising
- Coaching
- Content
- Consulting
- Training

DesignNews

Jacobs CEC Courses

CEC 2013 – 2015	CEC 2016 - 2017	CEC 2018
Fundamentals of Embedded Software (2013)	Bootloader Design for MCUs (2016)	Connecting Edge Devices (March 2018)
Mastering the Software Design Cycle (2014)	Rapid Prototyping w/ Micro Python (2016)	Building an IoT Connected PLC (April 2018)
Python for Embedded Systems(2014)	Debugging (2016)	Securing IoT Devices using Arm TrustZone (Nov 2018)
Software Architecture Design (2014)	Professional Firmware (2016)	Minimizing Defects (Dec 2018)
Baremetal C (2015)	API's and HAL's February 2017	Side Topics 2018
Mastering the ARM Cortex- M Processor (2015)	Baremetal to RTOS April 2017	TrustZone Technology Primer
Writing Portable and Robust Firmware in C (2015)	Designing IoT Sensor Nodes July 2017	RTOS Workshop
Design Patterns and the Internet (2015)	From C to C++ October 2017	Debugging Techniques
DefenNeuro	C	Presented by:

DesignNews

Session Overview

- Introduction
- How are systems attacked?
- Attack levels
- Defining a security strategy
- Architectural concepts

World's Most Dangerous Connected Device?

Presented by:

CONTINUING

What is the Worlds Most Dangerous Device?

- The Issues:
 - Safety
 - Security
 - Cost
 - Reliability
 - What else?

Security is not optional anymore

Billions of IoT devices

Data integrity, security & privacy

Potential losses of hacks, breaches

Image Source: Arm

Where can attacks come from?

DesignNews

Attack Levels

DesignNews

10

Defining a Security Strategy

Communications

- Man-in-the-middle
- Weak RNG
- Code vulnerabilities

Physical

- Non-invasive SCA clock/power glitch
- Invasive probing, laser, FIB

Platform Security Architecture

- Lifecycle
- Code downgrade
- Change of ownership

DesignNews

• Factory oversupply

- Software
- Buffer overflows
- Interrupts
- Malware

Image Source: Arm

Chitographi

Curity services

Counter-measures

Isolation

Architecture Concept #1

Architecture Concept #2

Architecture Concept #3

arm **TRUSTZONE**

Normal environment (Non-Secure)

Application Examples

- User applications
- RTOS
- Device drivers
- Protocol stacks

Normal Resources

General peripherals

Protected environment (Secure)

Secure Software Examples

- Secure Boot
- Cryptography libraries
- Authentication
- RTOS support APIs / RTOS

Secure Resources

- Secure storage
- Crypto accelerators

What You will need ...

Microchip SAM L11 Xplained Board

armkeil

A light snack ...

CONTINUING

Presented by:

Atmel Studio 7

Additional Resources

- Download Course Material for
 - C/C++ Doxygen Templates
 - Example source code
 - Blog
 - YouTube Videos
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>

From <u>www.beningo.com</u> under

- Blog > CEC – Securing IoT Devices using Arm TrustZone

Presented by:

DesignNews