Designing a Robust IIoT to SCADA Gateway

Class 2: Introduction to the RZ/N1

October 23, 2018

Charles J. Lord, PE President, Consultant, Trainer Blue Ridge Advanced Design and Automation

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

This Week's Agenda

- 10/22 The Challenges of IIoT and Industrial Ethernet
- 10/23 Introduction to the RZ/N1
- 10/24 Many Protocols, One Abstraction GOAL
- 10/25 Programming the R-IN Protocol Engine
- 10/26 Writing and Testing Our Application

Presented by:

Blue Ridge Advanced Design and Automation Asheville, North Carolina

This Week's Agenda

10/22 The Challenges of IIoT and Industrial Ethernet
10/23 Introduction to the RZ/N1
10/24 Many Protocols, One Abstraction - GOAL
10/25 Programming the R-IN Protocol Engine
10/26 Writing and Testing Our Application

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Many Protocols, One Chip

- Yesterday we saw that we need to be able to interface with many different protocols, some of which have specific hardware requirements
- Today we will look at the Renesas RZ/N1 family of processors, particularly the RZ/N1D with dual ARM Cortex A7 application processors.

4

System	Package			Interface	
2 x 16 ch DMAC		400-pin LFBGA 17mm x 17mm / 0.8 mm pitch 324-pin LFBGA 15mm x 15mm / 0.8 mm pitch			
JTAG		CPU		2 x I ² C	
CGC	Arm [®] Cortex [®] - A7 Dual Core Processor 500 MHz		[®] Cortex [®] - A7 Core Processor 500 MHz	2 x CAN	
Timer	FPU MMU Debug GIO	FPU N	MU Debug GIC	6 x SPI	
6 x 16 bit GPT				2 x USB2.0 HS (Host/Function)	
2 x 32 bit GPT x 2	L1 Cache I-Cache 16 KB	emory	L1 Cache Cache 16 KB	Parallel Bus I/F (up to 32b bus)	
1 x WDT per CPU	D-Cache 16 KB		Cache 16 KB	Memory Interface	
RTC		L2 Cache 256 KB			
Display	SRAM 2 MB (with ECC)			NAND Flash I/F	
LCD Controller	R-IN Engine				
	CPU Arm [®] Cortex [®] -M3			DDR2/DDR3 I/F	
	Arm ⁻ Cortex ⁻ M3 125 MHz			2 x SDIO/eMMC	
	MPU D	ebug	NVIC		
	HW-RTC	HW-RTOS Accelerator		Analog 12bit ADC @1 MHz Up to 2unit × 8ch	
	Ethernet Accelerator				
	Ethernet				
	EtherCAT Slave Controller				
	SercosIII Slave Controller				
	Ethernet Switch (4port + 1port) (IEEE1588, QoS, Aging, EEE, Snooping, DLR, TDMA, storm protection, cut-through, Jumbo frames)				
	2x indep				
	Hardware Redundancy (HSR) Controller				

CEC CONTINUING EDUCATION CENTER

Presented by:

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

R-IN Engine Ethernet

• EtherSwitch (4port + 1port)

 – QoS, Aging, EEE, Snooping, DLR, TDMA, Storm protection cut through, Jumbo frames

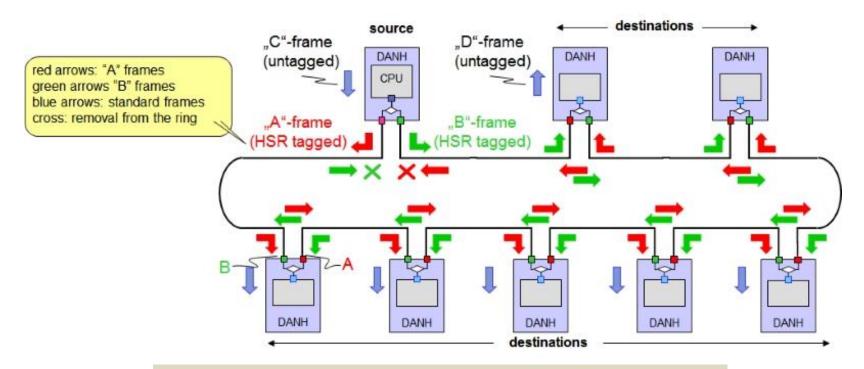
- Ethernet hardware acceleration
- EtherCAT slave controller
- Sercos[®] III slave controller
- HSR switch (in 400-pin package)
- 5-port Ethernet switch

Question 1– What does storm protection do?

DesignNews

Energy-Efficient Ethernet

- IEEE 802.3az
- Establishes a protocol for powering down the PHY transmitter during lulls in transmission
- Significant power savings, less heat dissipation

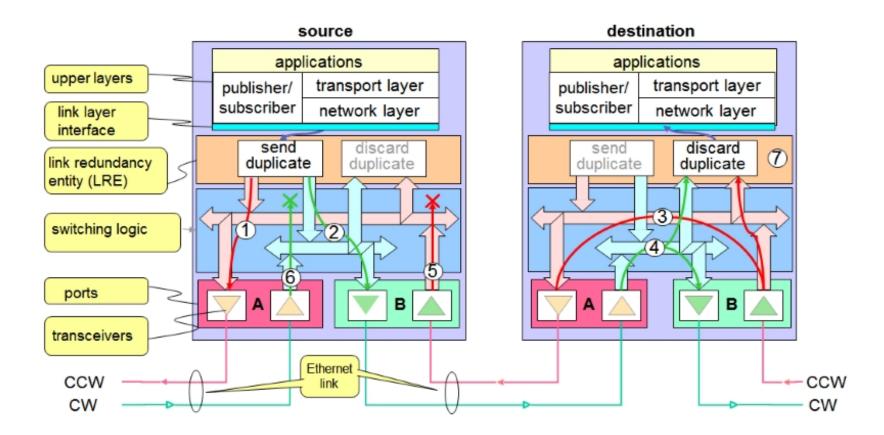


7

High-availability Seamless Redundancy (HSR)

HSR is built on a Device Level Ring (DLR) structure

Blue Ridge Advanced Design and Automation Asheville, North Carolina


8

Presented by:

CONTINUING

HSR Detail

Presented by:

CONTINUING EDUCATION

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Other I/O

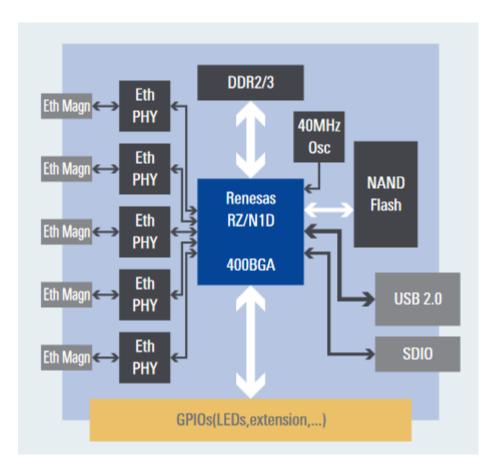
- UART × 8 channels
- $I^2C \times 2$ channels
- USB Host (HS)
- SPI × 6 channels (4 master, 2 slave)
- CAN bus
- LCD controller
- ADC: 12-bit × 8 channels (2 units in 400pin)
- GPIO and Parallel bus

DesignNews

10

R-IN Communication

- µITRON-like system calls
 - 30 system calls for elements such as events, semaphores, and mailboxes
- Task Scheduler
 - Hardware ISR: 32 routines selectable from 128 QINT routines
 - Number of context elements: 64
 - Number of semaphore identifiers: 128
 - Number of event identifiers: 64
 - Number of mailbox identifiers: 64
 - Number of mailbox elements: 192
 - Number of context priority levels: 16


Question 2 – What is the difference between ITRON and µITRON?

Presented by:

Blue Ridge Advanced Design and Automation Asheville, North Carolina

Example - PLC

Blue Ridge Advanced Design and Automation Asheville, North Carolina 12

RZ/N1 Boards

Dual Cortex-A7

RZ/N1D CPU Board

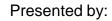
Single Cortex-A7

RZ/N1S CPU Board

R-IN Engine

RZ/N1L CPU Board

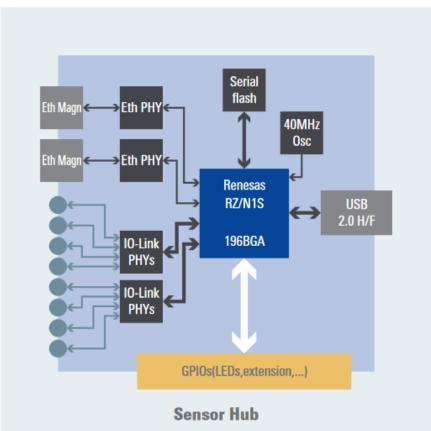
Expansion Board


Q

RZ/N1 Expansion Board

DesignNews

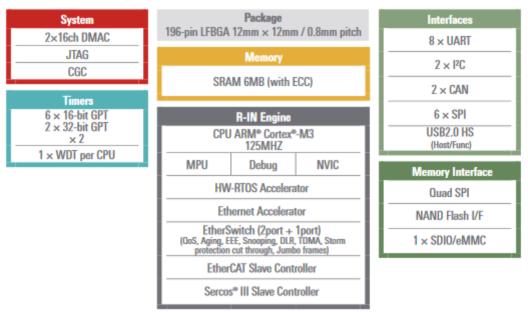
Blue Ridge Advanced Design and Automation Asheville, North Carolina



Example – Hub or Gateway

Note – single Cortex A7 Processor

Application example: Sensor Hub block diagram

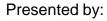


Blue Ridge Advanced Design and Automation Asheville, North Carolina 14

RZ/N1L (R-IN Stand Alone)

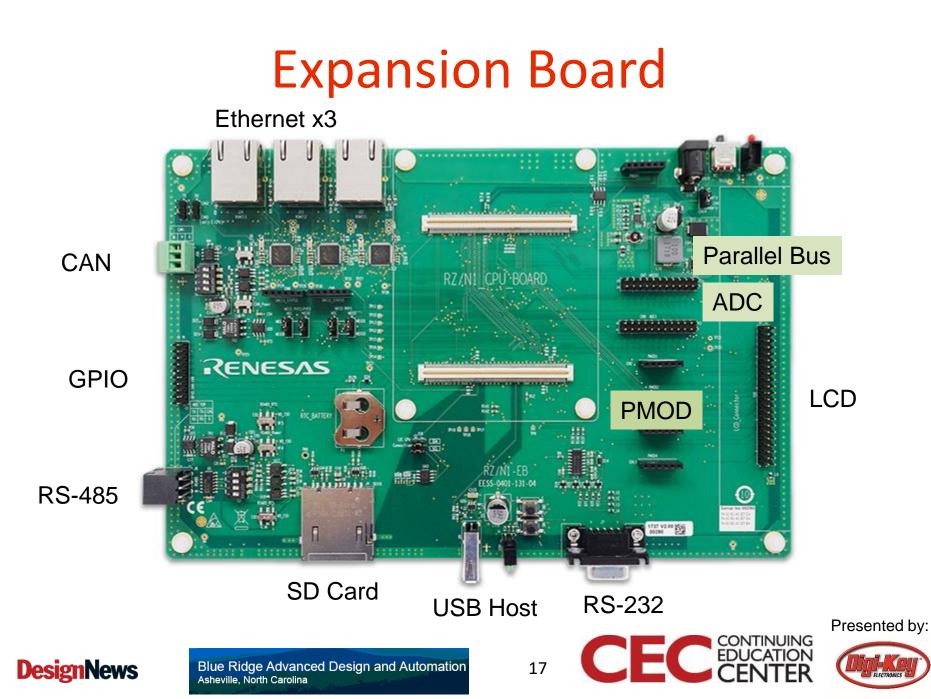
RZ/N1L block diagram

Blue Ridge Advanced Design and Automation Asheville, North Carolina 15


Development Board

- Basic CONNECT-IT! Kit
- RZ/N1D Board
- IAR I-jet Lite JTAG
- DVD with software, manuals
- Cables

16


 Available for loan from your Renesas office

DesignNews

Blue Ridge Advanced Design and Automation Asheville, North Carolina CEC

Developing With the RZ/N1D

- Treat as two entities:
 - Application Processor (Dual ARM Cortex-A7)
 - Communications Processor (ARM Cortex-M3)
- Application Processor can either be programmed with an RTOS or with a full O/S (Linux – preferred)
- Communications processor is programmed with an RTOS
- Code is provided for both Linux (including a port) and baremetal / RTOS
- More on this Thursday and Friday!

Presented by:

DesignNews

Industrial Ethernet Stacks

RZ/N Series: Solutions from Renesas Partners

A variety of software solutions are available from vendors with deep expertise in industrial networks.

Protocol Vendor				
Port.GmbH	Industrial network stack PROFINET (Slave) EtherNet/IP (Slave) Powerlink (Slave)			
TMG (TMG Technologie und Engineering GmbH)	Industrial network stack PROFINET (Slave) EtherNet/IP (Slave)			
Cannon Automata	Industrial network stack Sercos® III (Slave)			
NetModule	Redundant protocol HSR/PRP			

DesignNews

19

Available Development Environments

RZ/N Series: Development Environments

DesignNews

	SYSTEMS		RENESAS
CPU Core	Cortex [®] -A7 Cortex [®] -M3	 Cortex[®]-A7 (for VxWorks) 	• Cortex®-A7 (for Linux)
Debugger	 Embedded Workbench 	Eclipse	• GDB
Compiler	• IAR • C/C++Compiler	• GCC • DIAB	• GCC
ICEs	● I-jet™	• JTAG debugger (LAUTERBACH)	• J-Link (SEGGER)

Question 3 – What popular board uses Cortex A7 cores (and typically Linux)?

Presented by:

CONTINUING

Common Abstraction

- Programming our ports to accommodate all of these protocols needs a common abstraction layer
- The Renensas RZ/N1D R-IN protocol engine makes use of the GOAL (Generic Open Abstraction Layer) from PORT GmbH in order to make our programming more straightforward
- More on this tomorrow!

DesignNews

21

This Week's Agenda

- 10/22 The Challenges of IIoT and Industrial Ethernet
- 10/23 Introduction to the RZ/N1
- 10/24 Many Protocols, One Abstraction GOAL
- 10/25 Programming the R-IN Protocol Engine
- 10/26 Writing and Testing Our Application

Please stick around as I answer your questions!

- Please give me a moment to scroll back through the chat window to find your questions
- I will stay on chat as long as it takes to answer!
- I am available to answer simple questions or to consult (or offer in-house training for your company) c.j.lord@ieee.org http://www.blueridgetechnc.com http://www.blueridgetechnc.com
 http://www.linkedin.com/in/charleslord
 Twitter: @charleslord
 https://www.github.com/bradatraining

Presented by:

DesignNews