
Exploring Vision Devices Class 3: Machine Vision System Components

August 28, 2019 Don Wilcher

Presented by:

DesignNews

Class 3: Machine Vision System Components

Agenda

- What is driving the Machine Vision Market?
- Machine Vision System Components

2

• Lab Project: Part 1-Introduction to the Pixy2 Cam smart sensor

What is driving Machine Vision?...

Machine Vision enablers:

3

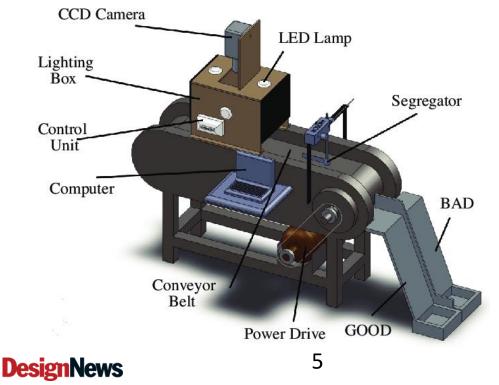
- quality assurance
- sorting
- material handling
- robotic guidance
- safety

DesignNews

What is driving Machine Vision?

Presented by:

Quality Assurance:


- Visual quality assurance systems can inspect every stage of production
- Artificial Intelligence to self-adapt and self adjust to changes.

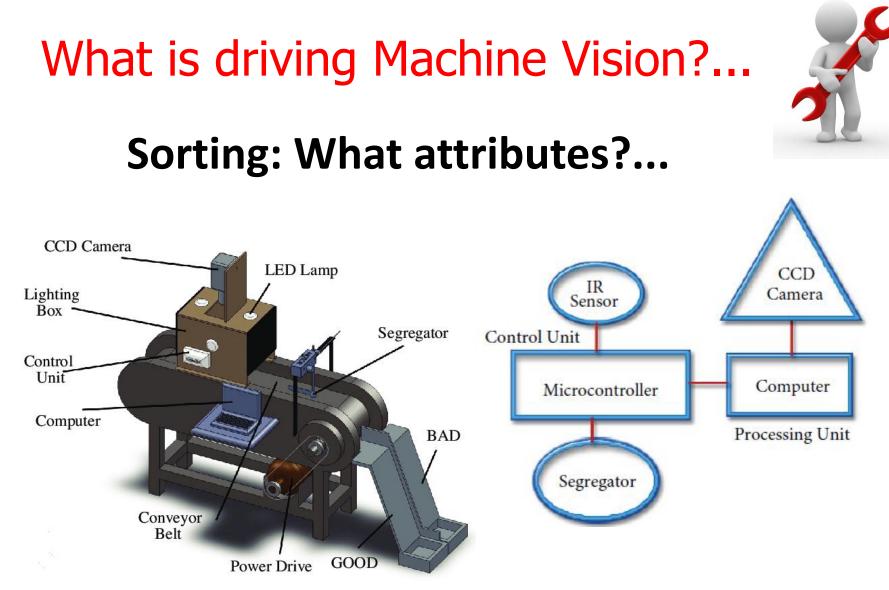
What is driving Machine Vision?... Sorting: What attributes?

- Shades of color
- shape
- Textures
- size

Tomato Sorter: sorts on

- shape
- Size
 - surface

Question 1:



What enabler is incorrect?

Machine Vision enablers:

- quality assurance
- sorting
- material handling
- robotic control
- safety

Tomato sorter: Additional Details

What is driving Machine Vision?...

Material Handling: Robotic based

- improve productivity
- increase safety
- reduce labor

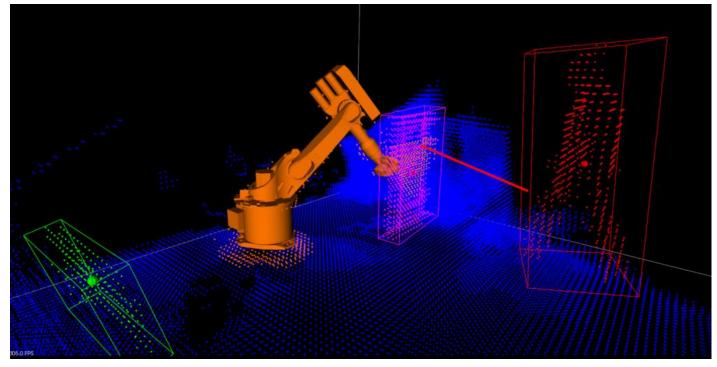
What is driving Machine Vision?...

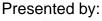
Robotic Guidance:

- uses sensors for detecting
- textureless surfaces
- Lighting conditions
- used with cobots

Question 2:

In reviewing the Tomato Sorter on slide 7 what hardware component can be replaced by the Raspberry Pi?


DesignNews


10

What is driving Machine Vision?... Safety:

- Prevents contamination from humans
- Prevents humans from hazardous environments

Five essential components:

- lighting
- lenses
- image processing
- image sensor
- communication

Lighting:

- Helps to produce a better image
- Types of lighting
 - a) *Quartz*
 - b) Halogen
 - c) *LED*
 - d) Metal Halide
 - e) Mercury
 - f) Xenon
 - g) High Pressure Sodium

Machine Vision Components...

Lighting:

Lighting systems is selected based on

- a) life expectancy
- b) cost effectiveness
- c) heat output
- d) stability
- e) application flexibility
- f) intensity


Machine Vision Components...

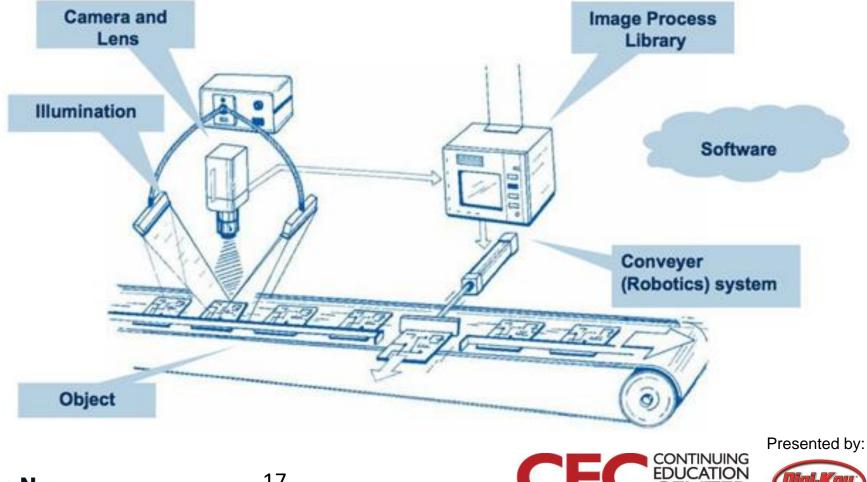
Lighting:

LED light has become the more predominate lighting system because of

- a) *life expectancy*
- b) energy efficiency
- c) application flexibility
- d) intensity

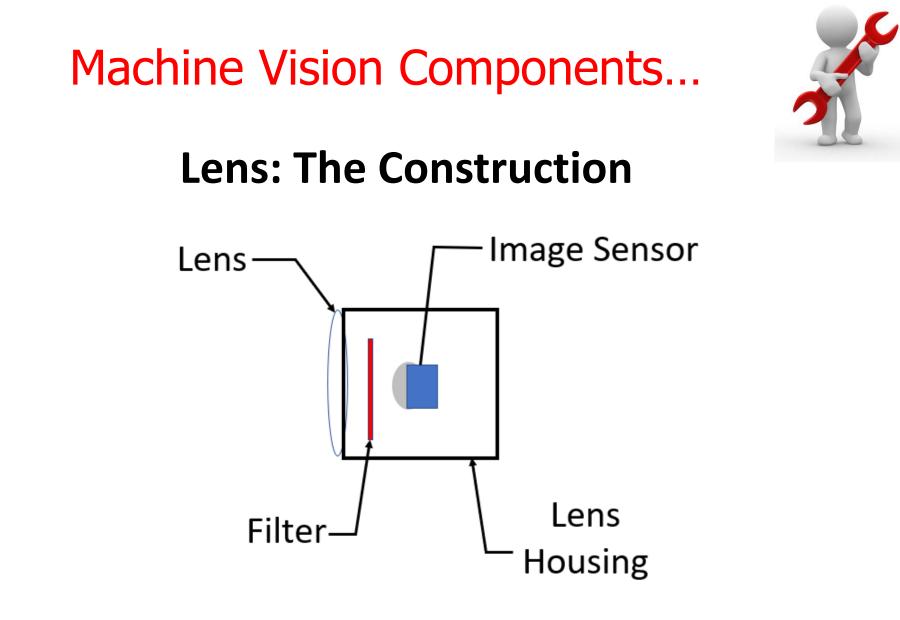
Which component is incorrect?

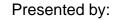
Five essential components:


- lighting
- lenses
- frame grabber
- image sensor
- communication

DesignNews

Machine Vision Components...




Lens:

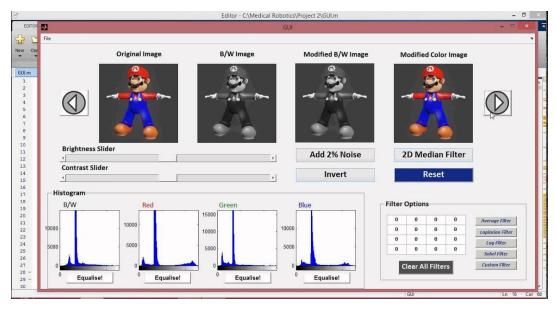
- The camera will not be able capture an image without a lens.
- Two fundamental parameters
 - a) *focal length*: determines the magnification of the projected image
 - b) *maximum aperture*: the light intensity of the image
- Filters: use to filter out certain frequency of light

Machine Vision Components...

Image Processing involves

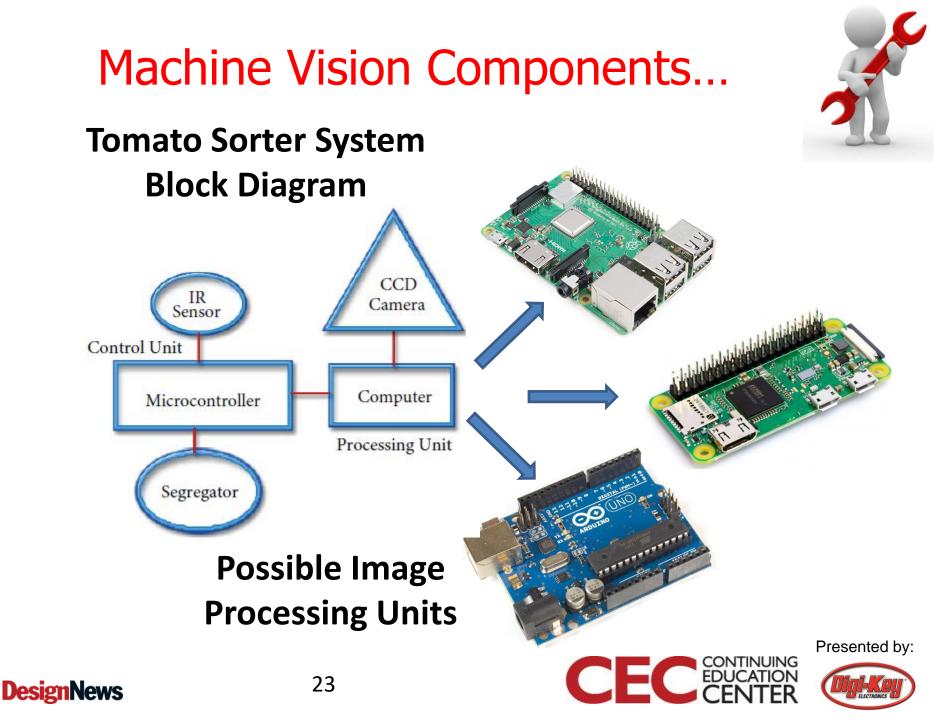
- a) Image conversions
- b) pixel value statistical analysis
- c) Pattern recognition, Pattern matching: Optical Character Recognition (OCR)
- d) Code extraction (Barcode, QR, etc)

Image Processor known as


- a) Image Processing Engineb) Image Processing Unit (IPU)c) Image Signal Processor (ISP)
- The basic operation for an image processor is to improve the quality of the captured imaged base object.
- Digital Signal Processor (DSP) is another hardware method to improving the captured image quality.
- IPU functions can be configured using a User Interface.

Machine Vision Components... Image Processor Tools include:

Popular open source libraries:


- a) OpenCV (2-D image processing and analysis)
- b) ARToolkit (Augmented Reality library)
- c) PCL (3D Image Processing and Analysis)

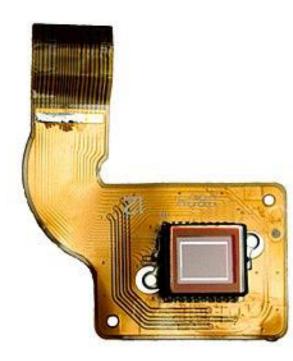
Matlab Image Processing GUI

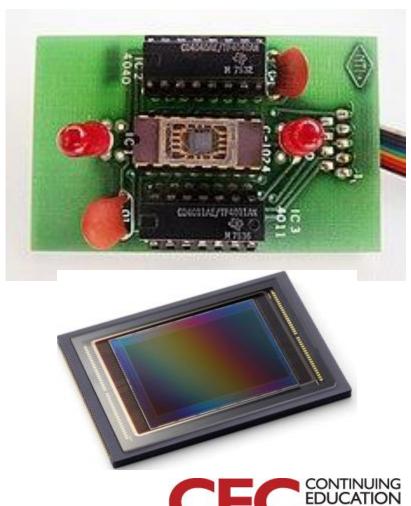


Image Sensor or Imager

- An electronic sensor used to detect and convey an images information.
- Methods of conveying images information

 a) converting the attenuation of light
 waves
 - i. pass through or
 - ii. reflect off objects
 - b) converting into signals: small burst of current





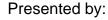


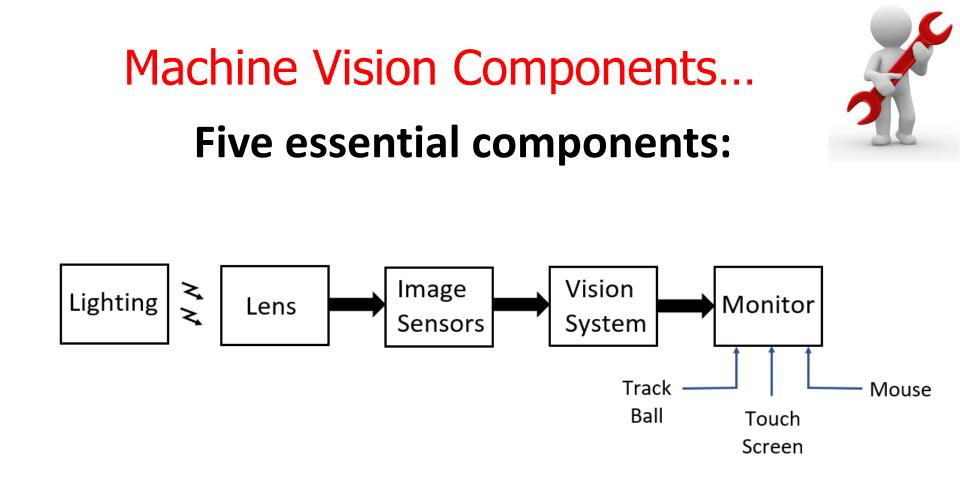
Image Sensors or Imagers



Question 4:

What is another name for Image Processor?

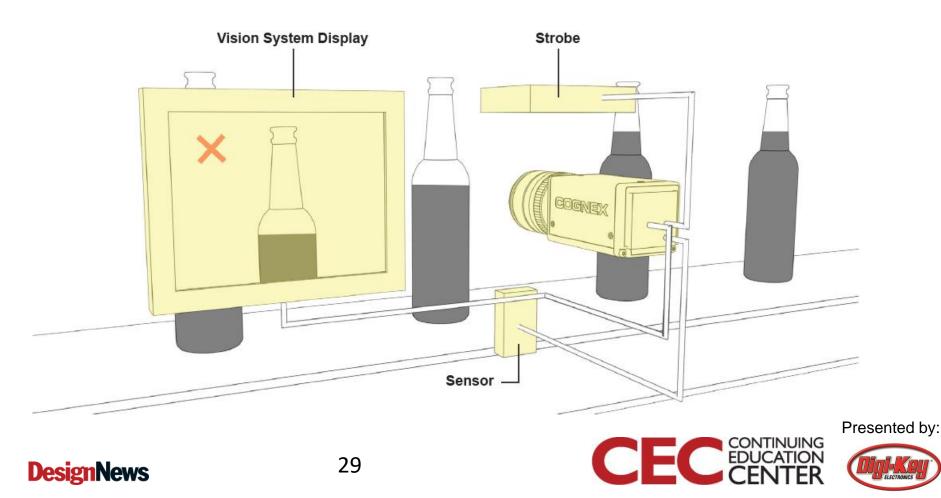
DesignNews

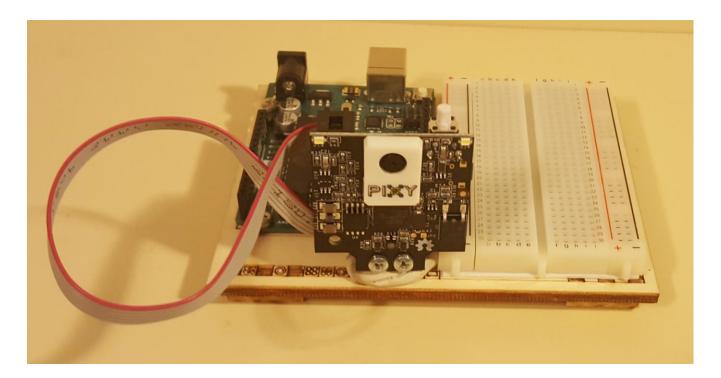

Communications involves relations

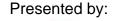
- a) between the operator of an inspection system
- b) with *process controls*
- c) with the vision equipment used to inspect the process or object

Communications to machine vision system include data-ethernet or discrete I/O connectivity

A typical System Block Diagram

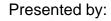



Machine Vision Components...



Machine Vision System: Bottling Process

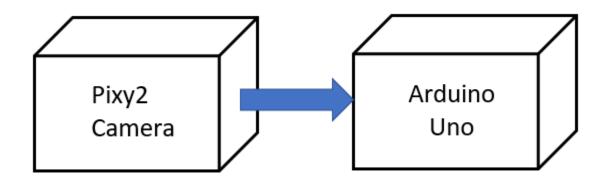
DesignNews



Lab Objectives:

- Learn how to add the *pixy2* library to the Arduino IDE.
- Learn how to attach a Pixy2 Camera to an Arduino.
- Learn how to test the Pixy2 camera with the ccc_hello_world code.

31



Basic Concept

Download the pixy2 library from the following website. https://pixycam.com/downloads-pixy2

VIDEOS 🕑

BUY

SUPPORT V

BLOG

ABOUT ~

Pixy2 Downloads

This page contains links to the most recent software/firmware releases for Pixy2. These downloads will not work with the original Pixy!

PROIECTS

PixyMon v2

PIXY

PixyMon v2 is the configuration utility for Pixy2 that runs on Windows, MacOS and Linux.

PRODUCTS

- Pixymon v2 Windows version 3.0.24 (exe)
 - installation docs for Windows Vista, 7, 8, 10
 - installation docs for XP
- PixyMon v2 Mac version 3.0.24 (dmg, High Sierra)
 installation docs
- Linux Pixymon v2 is available through github
 installation docs

Pixy2 firmware

Pixy2 firmware is code that runs on Pixy2 itself.

- Pixy2 general firmware version 3.0.13 (hex)
- Pixy2 LEGO firmware version 3.0.13 (hex)
 - installation docs

Arduino libraries and examples

The Arduino libraries allow your Arduino sketches/programs to talk to Pixy2.

Arduino Pixy2 library version 1.0.3 (zip)
 o installation docs

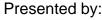
Libpixyusb2

Libpixyusb2 is a C/C++ library that allows your Linux-based controller (e.g. Raspberry Pi, BeagleBone) to talk to Pixy2 over USB.

DesignNews

34

The Pixy2 download page

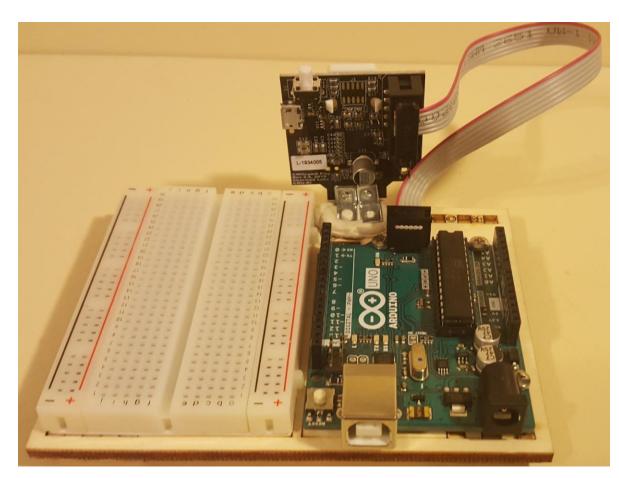


-	Sketch Tools Help	
0	Verify/Compile	Ctrl+R
ketch	Upload	Ctrl+U
	Upload Using Programmer	
void	Export compiled Binary	Ctrl+Alt+S
	Show Sketch Folder	Ctrl+K
1	Include Library	
void	Add File	
3		

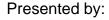
Manage Libraries Ctrl+Shift+		×
Add .ZIP Library	-	
Arduino libraries		ø
Bridge		
EEPROM		^
Esplora		
Ethernet		
Firmata		
GSM		
HID		
Keyboard		
LiquidCrystal		
Mouse		
Robot Control		
Robot IR Remote		
Robot Motor		
SD		
SPI		
Servo		~
SoftwareSerial		-
SpacebrewYun		
Stepper		
TFT		
Temboo		
WiFi		
Wire	ne Uno on	COM6

Adding the pixy2 library to the Arduino IDE

💿 sketch_aug09a Arduino 1.8.9			
File	Edit Sketch 1	Tools Help	
	New	Ctrl+N	
	Open	Ctrl+O	
	Open Recent	2	
	Sketchbook	3	
	Examples		
	Close	Ctrl+W	
	Save	Ctrl+S	
	Save As	Ctrl+Shift+S	
	Page Setup	Ctrl+Shift+P	
	Print	Ctrl+P	
	Preferences	Ctrl+Comma	
	Quit	Ctrl+Q	

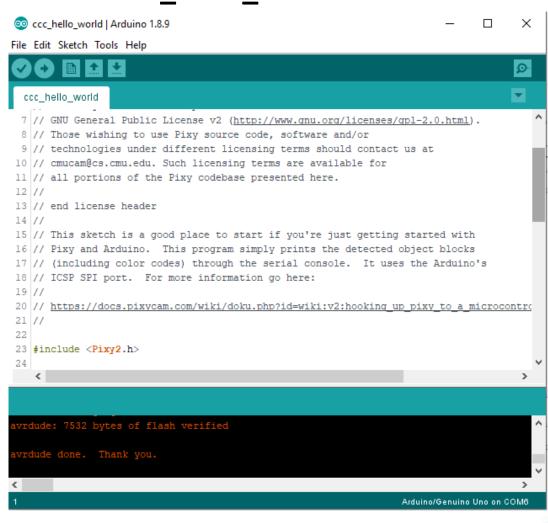

A		-	~
Examples for any board		- U	×
Adafruit Circuit Playground	>		_
Bridge	>		Ð
Esplora	>		
Ethernet	>		•
Firmata	>		<u> </u>
GSM	>		
LiquidCrystal	>		
Robot Control	>		
Robot Motor	>		
ros_lib	>		
SD	>		
Servo	>		
SpacebrewYun	>		
Stepper	>		
Temboo	>		
RETIRED	2		
Examples for Arduino/Genuino Uno		ccc_hello_world	
EEPROM		ccc_i2c_uart	
SoftwareSerial]	ccc_pantilt	
SPI]	ccc_zumo_chase	
Wire		line_get_all	
whe	-1	line_hello_world	
Examples from Custom Libraries		line_zumo_demo	
evive	2	test_other_functions	
Pixy2	3	video_get_rgb	COM6
Rosserial Arduino Library	>		
IN COLUMN TRUE			

The Pixy2 examples added to the Arduino IDE


Presented by:

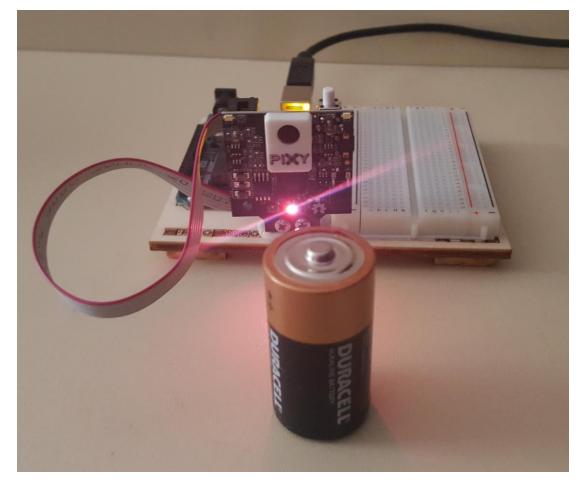
INCOMPATIBLE

Attaching ribbon cable to the Pix2y camera and the Arduino

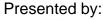


USB powering of the Pix2y camera through an Arduino

Lab Project: Part 1-Introduction to the Pixy2 Cam smart sensor... The ccc_hello_world code

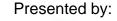

This sketch is a good place to start if you're just getting started with Pixy and Arduino.This program simply prints the detected object blocks (including color codes) through the serial console It uses the Arduino's ICSP SPI port.

DesignNews



Upload the ccc_hello_world code to the Arduino

RGB turns on when object is detected by the Pixy2 camera smart sensor



Pixy2 Camera Detection output displayed on the Serial Monitor

© COM6 —		×	
		Send	
block 2: sig: 3 x: 128 y: 146 width: 12 height: 3 index: 160 age: 74		(^
Detected 3			
block 0: sig: 3 x: 83 y: 103 width: 22 height: 11 index: 167 age: 67			
block 1: sig: 3 x: 184 y: 98 width: 28 height: 8 index: 163 age: 74			
block 2: sig: 3 x: 126 y: 132 width: 28 height: 6 index: 160 age: 76			
Detected 3			
block 0: sig: 3 x: 83 y: 103 width: 22 height: 11 index: 167 age: 68			
block 1: sig: 3 x: 184 y: 97 width: 28 height: 8 index: 163 age: 75			
block 2: sig: 3 x: 140 y: 90 width: 16 height: 5 index: 160 age: 77			
Detected 3			
block 0: sig: 3 x: 181 y: 101 width: 26 height: 7 index: 163 age: 76			
block 1: sig: 3 x: 126 y: 137 width: 28 height: 3 index: 167 age: 69			
block 2: sig: 3 x: 134 y: 122 width: 12 height: 6 index: 160 age: 78			
Detected 3			
block 0: sig: 3 x: 184 y: 103 width: 28 height: 9 index: 163 age: 77			
block 1: sig: 3 x:			~
Autoscroll Show timestamp Carriage return v 115200 baud v	Clear o	utput	

Question 5:

Using slide 28, what other input device can be used to interact with a monitor ?

