
Presented by:

Designing Embedded Systems
using Micro Python

June 13, 2019
Jacob Beningo

Class 4: Developing Real-time
Application Projects

Presented by:

Course Overview

2

Topics:

• Designing Products with MicroPython

• Getting Started with the Pyboard D-Series

• Customizing the MicroPython Kernel for Production

• Developing Real-time Application Projects

• Testing MicroPython Projects

Presented by:

Session Overview

• Real-time Scheduling

• Scheduling Techniques Overview

• Scheduling Examples

3

Presented by:

The Need for Real-time Scheduling

Real-time System Characteristics
• They are event driven; do not poll inputs

• Deterministic; given the same initial conditions, they produce
the same outputs in the same time frame.

• Often resource constrained in some manner such as:

– Clock speed

– Memory

– Energy consumption

• Use a dedicated microcontroller-based processor

• May a RTOS to manage system tasks

4

Presented by:

Scheduling in MicroPython

Four techniques for scheduling

• Round Robin scheduling

• Periodic scheduling using timers

• Cooperative scheduling

• MicroPython threads

5

Presented by:

Round Robin Scheduling

6

Presented by:

Round Robin Scheduling
main.py

import pyb # For uPython MCU features

Setup the MCU and application code to starting conditions

The blue LED will start on, the yellow LED will be off

def System_Init():

print("Initializing system ...")

pyb.LED(4).on()

pyb.LED(3).off()

print("Starting application ...")

Toggle the blue LED

def Task1():

pyb.LED(4).toggle()

Toggle the yellow LED

def Task2():

pyb.LED(3).toggle()

7

Presented by:

Round Robin Scheduling
##

#

Start script execution ...

#

##

Initialize the system

System_Init()

Main application loop

while True:

Run the first task

Task1()

#Run the second task

Task2()

#Delay 100 ms

pyb.delay(150)

8

Presented by:

Periodic Scheduling using Timers

9

Application Space
ISR “Thread” 1

ISR “Thread” 2

ISR “Thread” 3

TMR Interrupt

TMR Interrupt

TMR Interrupt

Presented by:

Periodic Scheduling using Timers

Best Practices
• Keep ISR’s short and fast

• Perform measurements to understand interrupt timing and
latency

• Use interrupt priority settings to emulate preemption

• Make sure task variables are declared as volatile

• Avoid calling multiple functions from an ISR

• Disable interrupts as little as possible

10

Presented by:

Periodic Scheduling using Timers
import micropython # For emergency exception buffer

import pyb # For uPython MCU features

Buffer for interrupt error messages

micropython.alloc_emergency_exception_buf(100)

Function that contains the task code for toggling the blue LED

def Led_BlueToggle(timer):

pyb.LED(4).toggle()

return

Function that contains the task code for toggling the yellow LED

def Led_YellowToggle(timer):

pyb.LED(3).toggle()

return

11

Presented by:

Periodic Scheduling using Timers
Setup the MCU and application code to
starting conditions

The blue LED will start on, the yellow LED will
be off

def System_Init():

print("Initializing system ...")

pyb.LED(4).on()

pyb.LED(3).off()

print("LED's initialized ...")

12

Create task timer for Blue LED

TimerBlueLed = pyb.Timer(1)

TimerBlueLed.init(freq=5)

TimerBlueLed.callback(Led_BlueToggle)

print("Blue Task initialized ...")

Create task timer for Yellow LED

TimerYellowLed = pyb.Timer(2)

TimerYellowLed.init(freq=5)

TimerYellowLed.callback(Led_YellowToggle)

print("Yellow Task initialized ...")

print("Starting application ...")

Presented by:

Periodic Scheduling using Timers
##

#

Start script execution ...

#

##

Initialize the system

System_Init()

Tracks seconds since program started

SecondsLive = 0

while True:

pyb.delay(5000)

SecondsLive = SecondsLive + 5

print("Executing for ", SecondsLive, " seconds")

13

Presented by:

Scheduling with Threads

14

Application Space

Thread 1 Thread 2 Thread 3

Presented by:

Scheduling with Threads

Best Practices for using Threads
• Use locking to protect shared data between threads

• Use threads for IO related tasks

• Don’t use threads to try to speed-up processing.

• A thread will run for at most 15 ms before giving up the GIL.
(Time slicing)

• Make threads safe by using atomic operations (use dis module
i.e. import dis, dis.dis(function))

• Become familiar with the Python threading model at
https://realpython.com/intro-to-python-threading/

15

https://realpython.com/intro-to-python-threading/

Presented by:

Scheduling with Threads

import micropython # For emergency exception buffer

import pyb # For uPython MCU features

import _thread # For thread support

Buffer for interrupt error messages

micropython.alloc_emergency_exception_buf(100)

Function that contains the task code for toggling the blue LED

def Led_BlueToggle():

while True:

pyb.LED(4).toggle()

pyb.delay(250)

16

Presented by:

Scheduling with Threads

Function that contains the task code for toggling the yellow LED

def Led_YellowToggle():

while True:

pyb.LED(3).toggle()

pyb.delay(250)

Setup the MCU and application code to starting conditions

The blue LED will start on, the yellow LED will be off

def System_Init():

print("Initializing system ...")

pyb.LED(4).on()

pyb.LED(3).off()

print("LED's initialized ...")

print("Starting application ...")

17

Presented by:

Scheduling with Threads

##

#

Start script execution ...

#

##

Initialize the system

System_Init()

_thread.start_new_thread(Led_BlueToggle, ())

_thread.start_new_thread(Led_YellowToggle, ())

Tracks seconds since program started

SecondsLive = 0

while True:

pyb.delay(5000)

SecondsLive = SecondsLive + 5

print("Executing for ", SecondsLive, " seconds")

18

Presented by:

Additional Resources

• Download Course Material for

– http://bit.ly/MicroPythonProjects

– Blog

– YouTube Videos

• Embedded Bytes Newsletter

– http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Designing Embedded Systems using
MicroPython

19

http://bit.ly/MicroPythonProjects
http://bit.ly/1BAHYXm
http://www.beningo.com/

