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Course Overview
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Topics:
• Designing Products with MicroPython
• Getting Started with the Pyboard D-Series
• Customizing the MicroPython Kernel for Production
• Developing Real-time Application Projects
• Testing MicroPython Projects
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Session Overview

• Building a product
• The MicroPython Kernel
• How to customize the kernel
• Creating production code (MPY)
• Deploying the Kernel
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How do we customize MicroPython?
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The MicroPython Kernel

5



Presented by:

Downloading the MicroPython
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1) Open a terminal
2) Install gcc toolchain:

3) Install git

4) Install MicroPython

sudo apt-get install gcc-arm-none-eabi

sudo apt-get install git

git clone https://github.com/micropython/micropython.git
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Available Ports
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What do we want to Customize?

• Heap and Linker file
• Default pin initialization
• Enable / Disable MicroPython features
• Customize pin access names
• Adjust memory initialization
• Add additional error recovery code
• Add new features to the kernel (Bluetooth, 

etc)
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Customize the Features
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Customize the Make File

• MCU series
• CMSIS target definition
• Alternate function mapping file for the board
• Linker file to be used
• Memory definitions for flash
• Debug probe configuration file
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Customize the Pins
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Customize the Pins
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Init D7, D8 to control Status LEDs
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MicroPython Start-up
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Steps for Customizing the Start-up

• Update the board mpconfigboard.h module 
with the MICROPY_BOARD_EARLY_INIT 
definition along with the function name that 
will be called.
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Steps for Customizing the Start-up

• Create a module to contain the code
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Steps for Customizing the Start-up

• Define the function that will be executed
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Steps for Customizing the Start-up

• Add the custom start-up code
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Steps for Customizing the Start-up
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Advantages to using MPY
• The Python module cannot be modified without flashing the kernel
• The module is compiled into byte code which keeps the source code away 

from prying eyes
• Updating the application scripts is faster because there are fewer modules 

to update
• If something goes wrong with the file system and it gets set back to 

default, the compiled modules will still be present and can be called as 
part of the default script to get the system into a safe state

• You can put the compiled module into zero wait RAM if it has speed 
critical functionality that will ensure it executes as efficiently as possible. 

• The compiled module can now also be stored and executed from flash 
which will free up RAM for the Python compiler and scripts that are stored 
on the file system. 
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Compiling the Kernel

• make BOARD= B_L475E_IOT01A 
FROZEN_MPY_DIR=boards/ B_L475E_IOT01A /scripts
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Deploying the Kernel
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dfu-util -a 0 0483:df11 -D build-B_L475E_IOT01A/firmware.dfu
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Additional Resources

• Download Course Material for
– http://bit.ly/MicroPythonProjects
– Blog
– YouTube Videos

• Embedded Bytes Newsletter
– http://bit.ly/1BAHYXm

From www.beningo.com under
- Blog > CEC – Designing Embedded Systems using 
MicroPython
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http://bit.ly/MicroPythonProjects
http://bit.ly/1BAHYXm
http://www.beningo.com/

