
Presented by:

Designing Embedded Systems 
using Micro Python

June 12, 2019
Jacob Beningo

Class 3: Customizing the MicroPython 
Kernel for Production



Presented by:

Course Overview

2

Topics:
• Designing Products with MicroPython
• Getting Started with the Pyboard D-Series
• Customizing the MicroPython Kernel for Production
• Developing Real-time Application Projects
• Testing MicroPython Projects



Presented by:

Session Overview

• Building a product
• The MicroPython Kernel
• How to customize the kernel
• Creating production code (MPY)
• Deploying the Kernel

3



Presented by:

How do we customize MicroPython?

4



Presented by:

The MicroPython Kernel

5



Presented by:

Downloading the MicroPython

6

1) Open a terminal
2) Install gcc toolchain:

3) Install git

4) Install MicroPython

sudo apt-get install gcc-arm-none-eabi

sudo apt-get install git

git clone https://github.com/micropython/micropython.git



Presented by:

Available Ports

7



Presented by:

What do we want to Customize?

• Heap and Linker file
• Default pin initialization
• Enable / Disable MicroPython features
• Customize pin access names
• Adjust memory initialization
• Add additional error recovery code
• Add new features to the kernel (Bluetooth, 

etc)
8



Presented by:

Customize the Features

9



Presented by:

Customize the Make File

• MCU series
• CMSIS target definition
• Alternate function mapping file for the board
• Linker file to be used
• Memory definitions for flash
• Debug probe configuration file

10



Presented by:

Customize the Pins

11



Presented by:

Customize the Pins

12

Init D7, D8 to control Status LEDs



Presented by:

MicroPython Start-up

13



Presented by:

Steps for Customizing the Start-up

• Update the board mpconfigboard.h module 
with the MICROPY_BOARD_EARLY_INIT 
definition along with the function name that 
will be called.

14



Presented by:

Steps for Customizing the Start-up

• Create a module to contain the code

15



Presented by:

Steps for Customizing the Start-up

• Define the function that will be executed

16



Presented by:

Steps for Customizing the Start-up

• Add the custom start-up code

17



Presented by:

Steps for Customizing the Start-up

18



Presented by:

Advantages to using MPY
• The Python module cannot be modified without flashing the kernel
• The module is compiled into byte code which keeps the source code away 

from prying eyes
• Updating the application scripts is faster because there are fewer modules 

to update
• If something goes wrong with the file system and it gets set back to 

default, the compiled modules will still be present and can be called as 
part of the default script to get the system into a safe state

• You can put the compiled module into zero wait RAM if it has speed 
critical functionality that will ensure it executes as efficiently as possible. 

• The compiled module can now also be stored and executed from flash 
which will free up RAM for the Python compiler and scripts that are stored 
on the file system. 

19



Presented by:

Compiling the Kernel

• make BOARD= B_L475E_IOT01A 
FROZEN_MPY_DIR=boards/ B_L475E_IOT01A /scripts

20



Presented by:

Deploying the Kernel

21

dfu-util -a 0 0483:df11 -D build-B_L475E_IOT01A/firmware.dfu



Presented by:

Additional Resources

• Download Course Material for
– http://bit.ly/MicroPythonProjects
– Blog
– YouTube Videos

• Embedded Bytes Newsletter
– http://bit.ly/1BAHYXm

From www.beningo.com under
- Blog > CEC – Designing Embedded Systems using 
MicroPython

22

http://bit.ly/MicroPythonProjects
http://bit.ly/1BAHYXm
http://www.beningo.com/

