Designing Embedded Systems using Micro Python

Class 1: Designing Products with MicroPython

June 10, 2019 Jacob Beningo

Presented by:

Course Overview

Topics:

- Designing Products with MicroPython
- Getting Started with the Pyboard D-Series
- Customizing the MicroPython Kernel for Production
- Developing Real-time Application Projects
- Testing MicroPython Projects

The Lecturer – Jacob Beningo

Jacob Beningo

Principal Consultant

Social Media / Contact

- : jacob@beningo.com
- : 810-844-1522
- : Jacob_Beningo
- : Beningo Engineering
- : JacobBeningo

in

EDN : Embedded Basics

***ARM** Connected Community

Consulting

- Advising
- Coaching
- Content
- Consulting
- Training

www.beningo.com

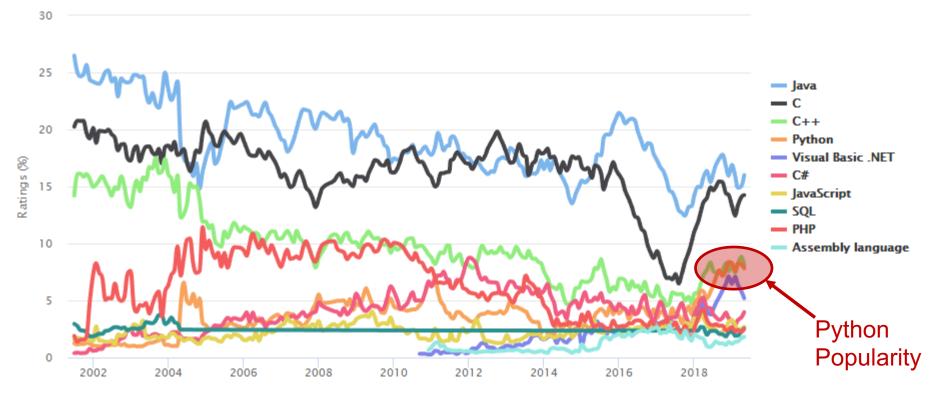
Presented by:

Jacobs CEC Courses

CEC 2013 – 2015	CEC 2016 - 2017	CEC 2018
Fundamentals of Embedded	Bootloader Design for MCUs	Connecting Edge Devices
Software (2013)	(2016)	(March 2018)
Mastering the Software	Rapid Prototyping w/ Micro	Building an IoT Connected
Design Cycle (2014)	Python (2016)	PLC (April 2018)
Python for Embedded	Debugging	Securing IoT Devices using
Systems(2014)	(2016)	Arm TrustZone (Nov 2018)
Software Architecture	Professional Firmware	Minimizing Defects
Design (2014)	(2016)	(Dec 2018)
Baremetal C (2015)	API's and HAL's February 2017	CEC 2019
Mastering the ARM Cortex-	Baremetal to RTOS	Machine Learning for
M Processor (2015)	April 2017	Embedded (April 2019)
Writing Portable and Robust	Designing IoT Sensor Nodes	Designing Embedded
Firmware in C (2015)	July 2017	Systems using MicroPython
Design Patterns and the	From C to C++	Launching a Product
Internet (2015)	October 2017	(Nov 2019)
DestignNews	C	ECCONTINUING EDUCATION CENTER

Session Overview

- Introduction
- Python
- MicroPython
- Hardware
- The REPL



Introduction

TIOBE Programming Community Index

Source: www.tiobe.com

Presented by:

CONTINUING

EDI

Python

- What is Python?
 - Interpreted language
 - Interactive
 - Object Oriented
- Why use Python?

- Entry level language that is easy to learn
- Is portable
- Supports a large set of libraries

MicroPython

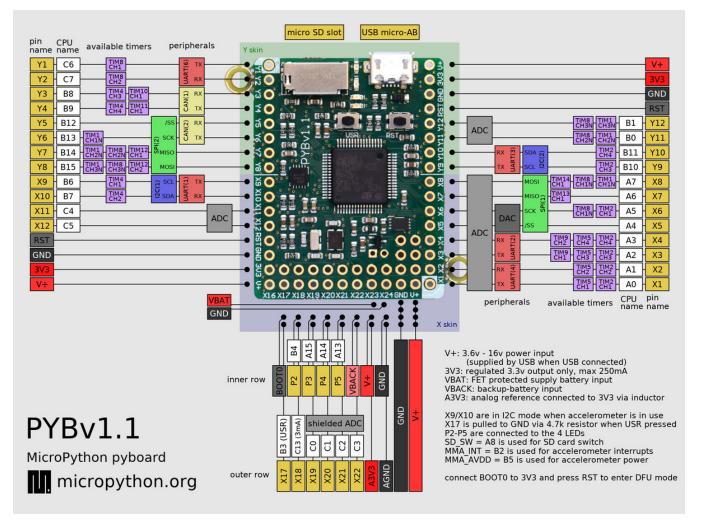
Definition: "MicroPython is a lean and efficient implementation of the <u>Python 3</u> programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments." (Source: micropython.org)

MicroPython Development

- MicroPython Compatible Hardware
- MicroPython Kernel
- Terminal Application
- A good text editor
 - Sublime Text
- Break-out boards
- Misc. sensors, actuators and LED's

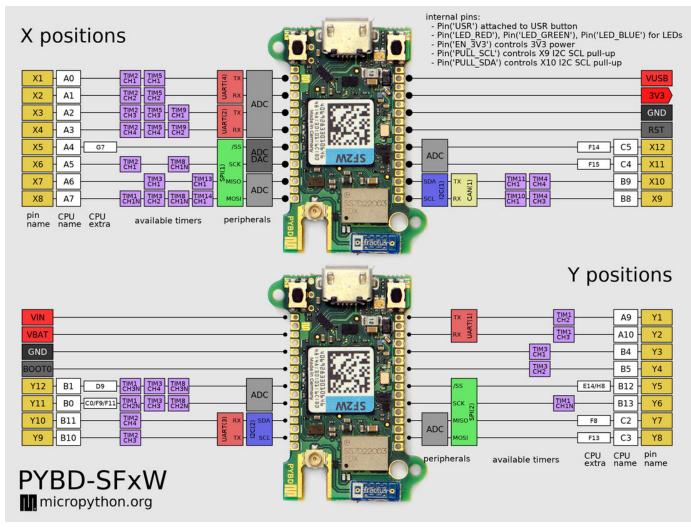
Libraries

• pyb


– Pyboard specific peripheral libraries

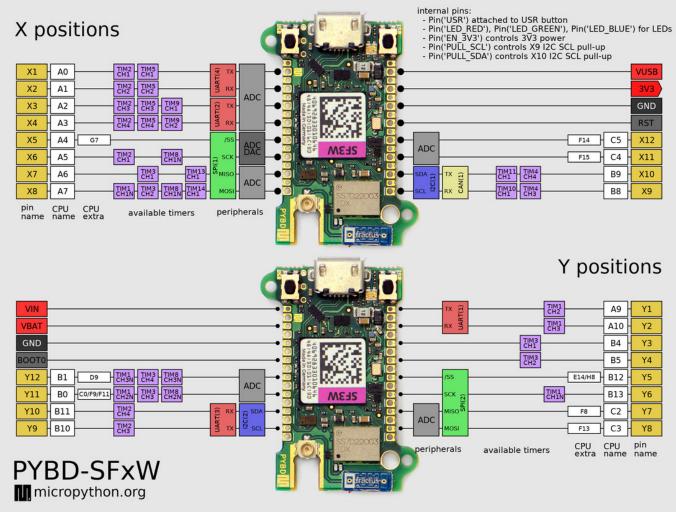
- micropython
- math
- sys
- uhashlib
- ujson
- _thread

DesignNews


Pyboard v1.1 (STM32F405RG)

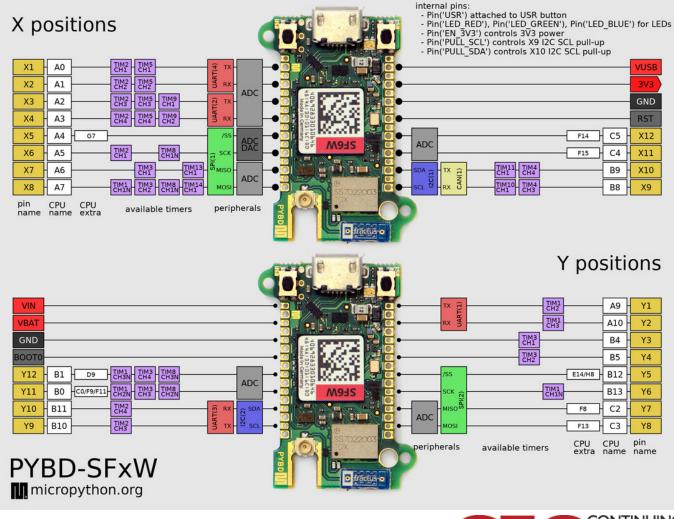
Presented by:

Pyboard D-Series (STM32F722)

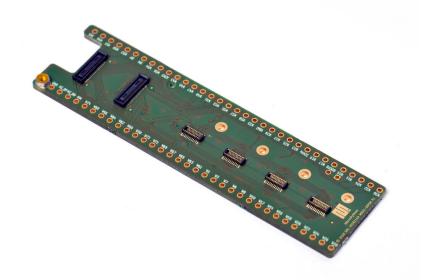

Presented by:

CONTINUING EDUCATION

Pyboard D-Series (STM32F723)



Pyboard D-Series (STM32F767)



Adapter Boards

Adapter Board

- MicroPython Module
- USB power adapter
- Header Break-outs

WBUS DIP68

- MicroPython Module
- Sensor Module break-outs

Header Break-outs

Memory and Sensor Boards

WBUS eMMC

• 4 GB eMMC

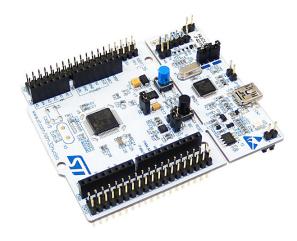
TILE Sensor

- Temperature
- Humidity
- Light

TILE LED

CONTINUING EDUCATION

 6x6 RGB LED Array


Alternative Hardare

B-L475E-IOT01A

Nucleo Board

Discovery Board

CONTINUING EDUCATION

ESP32

HUZZAH ESP8266

Presented by:

The REPL Interface

RealTerm: Serial Capture Program 2.0.0.70	
<pre>(RLF PYB: sync filesystems(RLF PYB: soft reboot(RLF Micro Python v1.3.8 on 2014-12-29; PYBv1.0 with STM32F405RG(RLF Type "help()" for more information.CRLF >>> import pyb(RLF >>> pyb.LED(1).on()CRLF >>> pyb.LED(2).on()CRLF >>> pyb.LED(3).on()CRLF >>> pyb.LED(4).on()CRLF >>> m</pre>	

Controls	Function
CTRL-A	Enter raw REPL mode
CTRL-B	Enter normal REPL mode
CTRL-C	Interrupt a running program
CTRL-D	Soft reset
help()	Displays information on pyb library

Getting Support

- Tutorials
 - <u>https://docs.micropython.org/en/latest/pyboard/tutorial/i</u> <u>ndex.html</u>
- Library reference
 - <u>https://docs.micropython.org/en/latest/library/index.html</u>
- Forum
 - <u>https://forum.micropython.org/</u>
- Kernel Repository
- https://github.com/micropython/micropython

Additional Resources

- Download Course Material for
 - <u>http://bit.ly/MicroPythonProjects</u>
 - Blog

DesignNews

- YouTube Videos
- Embedded Bytes Newsletter

From www.beningo.com under

– <u>http://bit.ly/1BAHYXm</u>

 Blog > CEC – Designing Embedded Systems using MicroPython

