Machine Learning for Embedded Software Engineers

Class 2: Machine Learning Architectures for Embedded Systems

April 23, 2019 Jacob Beningo

Presented by:

Course Overview

Topics:

- Introduction to Machine Learning
- Machine Learning Architectures for Embedded Systems
- Machine Learning Applications: Vision and Speech
- Machine Vision with OpenMV
- Near Real-time Machine Learning using Coral

Session Overview

- Intelligence in the Cloud
- Intelligence at the Edge
- Datasets
- Software Libraries
- CMSIS-NN

Intelligent Embedded Architectures

Intelligence in the Cloud

Experiment Setup

- STM32F779I-Eval
- Google Cloud Vision API's
- Express Logic
 - X-Ware IoT Platform
 - ThreadX
 - NetX HTTPS Client
 - NetX Secure TLS
 - etc

Intelligence in the Cloud

Output:	Log file: Off
DHCP client running IP address: 10.0.0.221 Network mask: 255.255.255.0 Google Vision API is ready DNS Lookup for GOOGLE APIs Domai GOOGLE APIs Domain IPv4 address: TCP session established.	n:vision.googleapis.com 172.217.0.10
Text[(258, 111), (541, 111), (54 Text[(252, 240), (558, 242), (55	1, 203), (258, 203)]: Hello 8, 336), (252, 334)]: World

Why is ML Moving to the Edge?

Presented by:

EC CONTINUING EDUCATION

Model Deployment on Cortex-M MCU's

- Running ML framework on Cortex-M systems is impractical
- Need to run bare-metal code to efficiently use the limited resources
- Arm NN translates trained model to the code that runs on Cortex-M cores using CMSIS-NN functions
- **CMSIS-NN:** optimized low-level NN functions for Cortex-M CPUs
- CMSIS-NN APIs may also be directly used in the application code

DesignNews

Intelligence at the Edge

- What do you need to do machine learning at the edge?
- Hardware Floating Unit (FPU)
- ML Libraries
- Enough CPU cycles
- Training Dataset
 - 5,000 labeled examples per category for acceptable performance
 - 10,000,000 labeled examples to achieve human performance
- Time and patience

Datasheets

Presented by:

CONTINUING

FDI

Software Libraries

CMSIS-NN

- CMSIS-NN: collection of optimized neural network functions for Cortex-M CPUs
- Key considerations:
 - Improve performance using SIMD instructions
 - Minimize memory footprint
 - NN-specific optimizations: data-layout and offline weight reordering

CMSIS-NN: Efficient NN Kernels for Cortex-M CPUs

Convolution

- Boost compute density with GEMM based implementation
- Reduce data movement overhead with depth-first data layout
- Interleave data movement and compute to minimize memory footprint
- Pooling
 - Improve performance by splitting pooling into x-y directions
 - Improve memory access and footprint with in-situ updates
- Activation
 - ReLU: Improve parallelism by branch-free implementation
 - Sigmoid/Tanh: fast table-lookup instead of exponent computation

CMSIS-NN paper: <u>https://arxiv.org/abs/1801.06601</u>

*Baseline uses CMSIS 1D Conv and Caffe-like Pooling/ReLU

Where are Existing NN Solutions?

NN Models from literature trained on Google speech commands dataset Many resources available due to the openness of ML community:

- DNN: <u>https://research.google.com/pubs/archive/42537.pdf</u>
- CNN: <u>https://research.google.com/pubs/archive/43969.pdf</u>
- CNN-GRU: <u>https://arxiv.org/abs/1703.05390</u>
- LSTM: <u>https://arxiv.org/abs/1705.02411</u>

Need **compact models**: that fit within the Cortex-M system memory

Need models with less operations: to achieve real time performance

Convolutional Neural Network (CNN) on Cortex-M7

- CNN with 8-bit weights and 8-bit activations
- Total memory footprint: 87 kB weights + 40 kB activations + 10 kB buffers (I/O etc.)
- Example code available in CMSIS-NN github

NUCLEO-F746ZG 216 MHz, 320 KB SRAM

Layer	Network Parameter	Output activation	Operation count	Runtime on M7
Conv1	5x5x3x32 (2.3 KB)	32x32x32 (32 KB)	4.9 M	31.4 ms
Pool1	3x3, stride of 2	16x16x32 (8 KB)	73.7 K	1.6 ms
Conv2	5x5x32x32 (25 KB)	16x16x32 (8 KB)	13.1 M	42.8 ms
Pool2	3x3, stride of 2	8x8x32 (2 KB)	18.4 K	0.4 ms
Conv3	5x5x32x64 (50 KB)	8x8x64 (4 KB)	6.6 M	22.6 ms
Pool3	3x3, stride of 2	4x4x64 (1 KB)	9.2 K	0.2 ms
ip1	4x4x64x10 (10 KB)	10	20 K	0.1 ms
Total	87 KB weights	Total: 55 KB	24.7 M Ops	99.1 ms
		Max. footprint: 40 KB		

Additional Resources

- Download Course Material for
 - C/C++ Doxygen Templates
 - Example source code
 - Blog
 - YouTube Videos
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>

From <u>www.beningo.com</u> under

Blog > CEC – Machine Learning for Embedded Software
Engineers

DesignNews

