
Presented by:

Transitioning from C to C++

October 12th, 2017
Jacob Beningo

Class 4: Real-time C++

Embedded System Design Techniques™



Presented by:

Course Overview

2

Topics:

• C++ Fundamentals

• Designing a C++ Application

• Beginning the Transition

• Real-Time C++

• Getting into the Bits and the Bytes



Presented by:

Session Overview

• Inline Definitions

• Templates

• Inheritance

• Polymorphism

• Virtual Functions

3



Presented by:

Inline definitions

4

Led.h



Presented by:

Inline Definitions

5



Presented by:

Templates

A template allows a developer to use the same 
code for different types. 
- Improves code flexibility
- Easier program maintenance

6

Syntax

template<typename T>

T add(const T& a, const T& b)

{

return a + b;

}

Use

int add(2,3);

Result: 5

Use

uint8_t add(4,3);

Result: 7



Presented by:

Templates

7

No typedefs!
No constructor 

parameter lists!

No private 

variables!



Presented by:

Templates

8

Becomes >

Default values and types Default values and types



Presented by:

Templates

• Non-templated LED Program

• Templated LED Program

9



Presented by:

Inheritance

10

LED Base Class

LED Port Class LED PWM Class



Presented by:

Inheritance

11

Virtual Functions

Protected Constructor

Non-implemented copy and 

assignment operators



Presented by:

Inheritance

12



Presented by:

Polymorphism

Polymorphism – providing a single interface to 
entities of different types.

Dynamic Polymorphism – uses a runtime virtual 
function mechanism to call methods of a 
derived class by accessing them from a base 
class pointer or reference. 

13



Presented by:

Dynamic Polymorphism

void led_toggler(led_base* led)
{

// Toggle LED by dynamic polymorphism
led->toggle();

}

void do_something()
{

led_toggler(&led_a5);  // LED Port Object
led_toggler(&led_b7);  // LED PWM Object

}

14



Presented by:

Virtual Functions

15

Pure Abstract



Presented by:

Class Relationships

• is-a relationship – derived class is-a subclass of the 
base class

• has-a relationship – class has something, such as a 
relationship with a member variable. ie. has-a pwm 
object

• uses-a relationship – class uses something such as a 
pwm object

16



Presented by:

Non-copyable Classes

17

Non-implemented copy and 

assignment operators



Presented by:

Best Practices

• Use constexpr or enum to create constants, don’t use #define

• Carefully monitor code size, memory usage and execution 
overhead as you develop 

• Use protect for abstract class constructors and other data that 
should be accessible to derived classes

• If methods do not need to write data, make them const (there 
is no penalty!)

• Make class non-copyable for low-level hardware

18



Presented by:

Additional Resources

• Download Course Material for

– C/C++ Doxygen Templates

– Example source code

– Blog

– YouTube Videos

• Embedded Bytes Newsletter
– http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Designing IoT Sensor Nodes using the ESP8266

19

http://bit.ly/1BAHYXm
http://www.beningo.com/


Presented by:

20

The Lecturer – Jacob Beningo

www.beningo.com

Jacob Beningo

Principal Consultant

:  jacob@beningo.com

:  810-844-1522

:  Jacob_Beningo

:  Beningo Engineering

:  JacobBeningo

:  Embedded Basics

Consulting

• Advising

• Coaching

• Content

• Consulting

• Training

Social Media / Contact


