
Presented by:

Transitioning from C to C++

October 9th, 2017
Jacob Beningo

Class 1: C++ Fundamentals

Embedded System Design Techniques™

Presented by:

Course Overview

2

Topics:

• C++ Fundamentals

• Designing a C++ Application

• Beginning the Transition

• Real-Time C++

• Getting into the Bits and the Bytes

Presented by:

3

The Lecturer – Jacob Beningo

www.beningo.com

Jacob Beningo

Principal Consultant

: jacob@beningo.com

: 810-844-1522

: Jacob_Beningo

: Beningo Engineering

: JacobBeningo

: Embedded Basics

Consulting

• Advising

• Coaching

• Content

• Consulting

• Training

Social Media / Contact

Presented by:

4

Jacobs CEC Courses
CEC 2013 – 2015 CEC 2016 2017 Side Topics 2017

Fundamentals of Embedded
Software (2013)

Mastering the Software
Design Cycle (2014)

Python for Embedded
Systems(2014)

Software Architecture
Design (2014)

Baremetal C (2015)

Mastering the ARM Cortex-
M Processor (2015)

Writing Portable and Robust
Firmware in C (2015)

Design Patterns and the
Internet (2015)

Real-Time Software
using Micro Python

Embedded Bytes
Newsletter

Bootloader Design for MCUs
(2016)

Rapid Prototyping w/ Micro
Python (2016)

http://bit.ly/1BAHYXm

Debugging
(2016)

Professional Firmware
(2016)

API’s and HAL’s
February 2017

Baremetal to RTOS
April 2017

Designing IoT Sensor Nodes
July 2017

From C to C++
October 2017

http://bit.ly/1BAHYXm

Presented by:

Session Overview

• Introduction to “Embedded C++”

• C versus C++

• Object Oriented Design

• Classes

5

Presented by:

Course Tools and Software

6

STM32 IoT Discovery Node Atollic TrueSTUDIO

GNU G++

Presented by:

Introduction

7

Presented by:

Introduction

8

Source: https://spectrum.ieee.org/computing/software/the-2017-top-programming-

languages

Presented by:

Introduction

• Dennis and Ritchie created C in the 60’s

• Bjarne Stroustrup created C++ in 1983*

– Added data abstraction and object-oriented
programming to C

– Named C++ for ++ operator

– Standardized in ISO/IEC 14882:1998

9

Presented by:

C versus C++

• Procedural language – follows a series of well-
structured steps and procedures to complete
a computational task or program

• Object-Oriented design – A technique for
developing software in which the solution is
expressed in terms of objects – self-contained
entities composed of data and operations on
that data

10

Presented by:

C versus C++

• Procedural

• Low level

• char mystring[] = “hi”;

• No error handling

• Type aliasing

11

• Object Oriented

• Low and high level

• string mystring = “hi”;

• Try/catch

• Unique types

• type conversion
operators

• Operator overloading

• Abstract data types

Presented by:

C to C++ - References

void increment(int a)
{

a++;
}

int value = 2;
int main()
{

increment(value);
}

12

void increment(int &a)
{

a++;
}

int value = 2;
int main()
{

increment(value);
}

Value is 2 Value is 3

Presented by:

C to C++ - References

13

void increment(int *a)
{

(*a)++;
}

int value = 2;
int main()
{

increment(&value);
}

C Code

void increment(int &a)
{

a++;
}

int value = 2;
int main()
{

increment(value);
}

C++ Code

Presented by:

C to C++ - Function Overloading

14

void increment(int &a);
void increment(float &a);
int increment(uint8_t a);

void increment(int &a);
int increment(int a);
float increment(int a);
void increment (int a[]);

Overloading

Invalid!

Presented by:

A simple application

C Application

#include <stdio.h>

int main()
{

printf(“Hello World!”);
}

15

C++ Application

#include <iostream>

using namespace std;

int main()
{

cout << “Hello World!”;
}

Presented by:

namespaces

namespace std
{

: namespace declarations, i.e. vars, data, etc
}

namespace “hides” identifiers within the block

1) Qualified access, std::cout
2) using namespace std

16

Presented by:

Objects and Classes

17

Data

Operation 1

Operation 2

Operation 3

Presented by:

Objects and Classes

class Time_t
{
public:

void Set (int, int, int);
void Increment();
void PrintTime(); const;
bool Equal(Time_t) const;
bool LessThan(Time_t) const;

private:
int hrs;
int mins;
int secs;

};
18

Time_t TimeNow;
Time_t TimeStamp;
Time_t TimeStart;
Time_t TimeStop;
Time_t Duration;

TimeNow.Set(0,0,0);
TimeNow.Increment();

Presented by:

Objects and Classes
#include “timetype.h”
#include <iostream>

void Time_t::Set(int hours, int minutes, int seconds)
{

hrs = hours;
mins = minutes;
secs = seconds;

}

void Time_t::PrintTime() const
{

cout << hrs << mins << secs;
}

19

Presented by:

Objects and Classes - Constructors

class Time_t
{
public:

void Set (int, int, int);
void Increment();
void PrintTime(); const;
bool Equal(Time_t) const;
bool LessThan(Time_t) const;
Time_t (int,int,int);
Time_t ();

private:
int hrs;
int mins;
int secs;

};

20

void Time_t::Time_t(int hours,
int minutes,
int seconds)

{
hrs = hours;
mins = minutes;
secs = seconds;

}

void Time_t::Time_t()
{

hrs = 0;
mins =0;
secs = 0;

}

Presented by:

Additional Resources

• Download Course Material for

– C/C++ Doxygen Templates

– Example source code

– Blog

– YouTube Videos

• Embedded Bytes Newsletter
– http://bit.ly/1BAHYXm

From www.beningo.com under

- Blog > CEC – Transitioning from C to C++

21

http://bit.ly/1BAHYXm
http://www.beningo.com/

