

DesignNews

Exploring Electronic Circuits with Breadboards, AI Circuit Analysis, and Simulators

DAY 5: Exploring Circuit Simulators – Part 2: Tinkercad Circuits

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

Course Kit and Materials

Adafruit Parts Pal Kit

Research Perspective

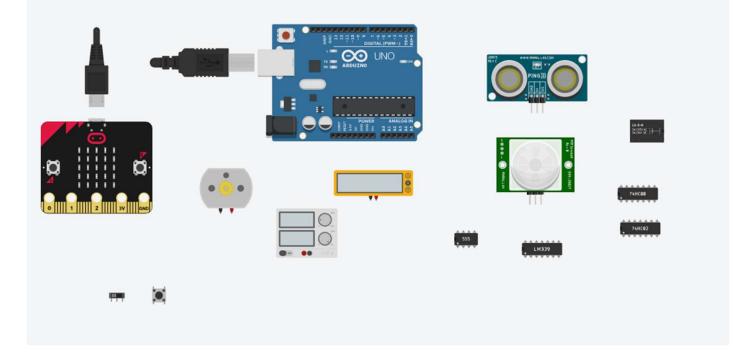
"Breadboards are widely used in early-stage circuit prototyping since they enable users to rapidly try out different components and to change the connections between them" (Zhu et al., 2020).

Agenda:

- What is Tinkercad Circuits?
- Why Tinkercad Circuits?
- Hands-On With Tinkercad Circuits

What is Tinkercad Circuits?

- Tinkercad Circuits is a free online simulator for designing and testing electronic circuits.
- The online simulator is popular among students and hobbyists.
- Tinkercad Circuits is available in 16 languages.
- The online simulator has a virtual lab bench consisting of a) electronic test instruments
 b) analog electronics components
 c) digital electronics components
 d) electric switches
 e) electromechanical relays
 f) motors
 - g) sensors
 - h) Arduino Uno and Micro:bit boards



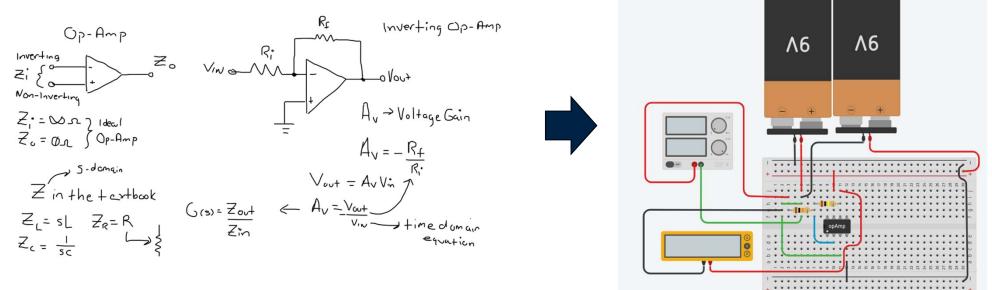
What is Tinkercad Circuits?...

The online simulator has a virtual lab bench consisting of:

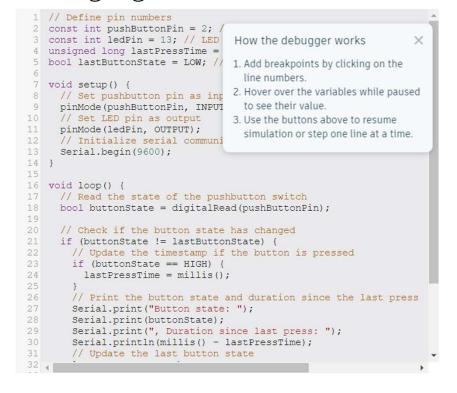
Question 1

What groups are Tinkercad Circuits popular with?

- a) students and engineers
- b) engineers and hobbyists
- c) engineers and educators
- d) students and hobbyists



- **Design circuits**: Place and connect electronic components to create a virtual circuit.
- Simulate circuits: Observe how components respond virtually before building a real-life circuit.
- **Program:** Use the interactive circuit editor to code virtual projects. Circuits are available in 16 languages.
- Use a breadboard view: The presented graphics provide a physical view of the electronic components used in real life.
- Use a Blocks + Text view: Explore coding possibilities using blockly code while the same programming concepts are presented in Python and C++.
- Electronic Circuit Schematic Generation: Placing electronic components onto a solderless breadboard automatically generates an electronic circuit schematic diagram for project documentation.
- Component List Generation: Automatically capture the circuit design's Bill Of Materials (BOM) for project documentation.


Design circuits: Place and connect electronic components to create a virtual circuit.

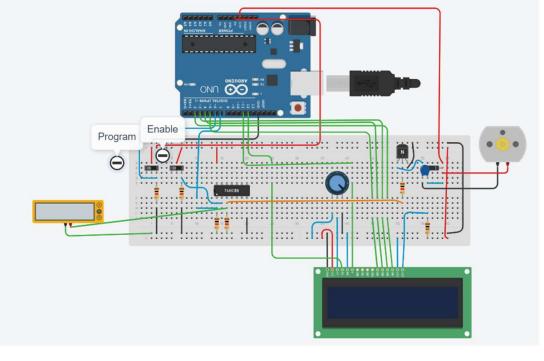
Program: Use the interactive circuit editor to code virtual projects. Circuits are available in 16 languages.

Predictive Maintenance: Pushbutton Switch Fault Detection Partial Code

Question 2

How many languages are available for Tinkercad Circuits?

- a) 10
- b) 12
- c) 13
- d) 16

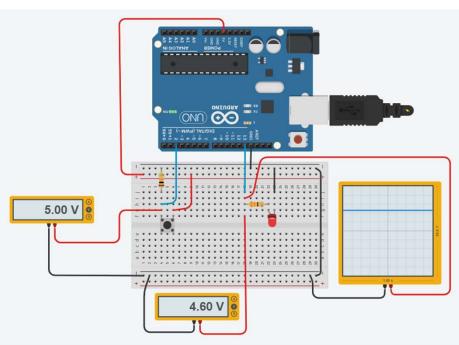


Program: Use the interactive circuit editor to code virtual projects. Circuits are available in 16 languages.

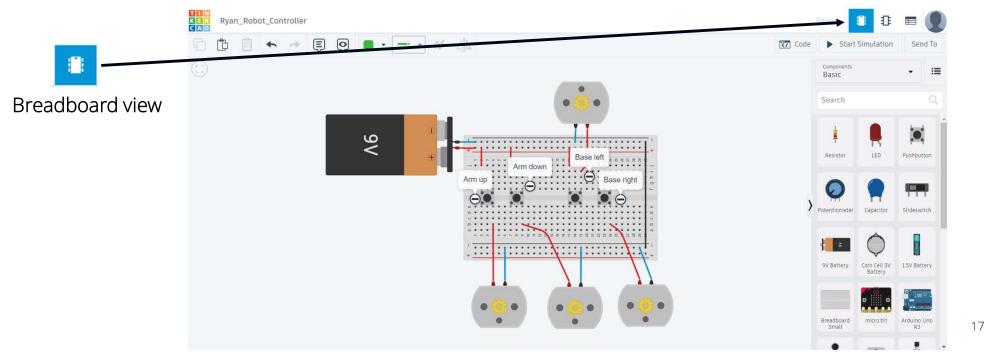
Program: Use the interactive circuit editor to code virtual projects. Tinkercad Circuits are available in 16 languages.

> DC Programmable Motor Controller Partial Code

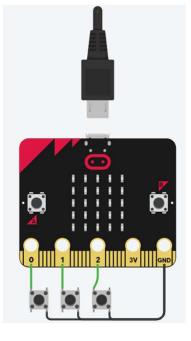
```
1 #include <LiquidCrystal.h>
 2 // initialize the library with the numbers of the interface pins
 3 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
 4 // constants won't change. They're used here to
 5 // set pin numbers:
 6 const int ProgramPin = 6; // pin number for PROGRAM input control
 8 const int OUTPin = 7; // pin number for OUTPUT control signal
   // variable will change:
10 int ProgramStatus = 0; // variable for reading Program input stat
12 void setup() {
13 // initialize the following pin as an output:
14 pinMode (OUTPin, OUTPUT);
15 // initialize the following pin as an input:
16 pinMode (ProgramPin, INPUT);
17 // set up the LCD's number of rows and columns:
18 lcd.begin(16, 2);
19 // set cursor for messages andprint Program select messages on th
21 lcd.setCursor(0,0);
22 lcd.print( ">1.Closed(ON)");
23 lcd.setCursor(0, 1);
24 lcd.print ( ">2.Open(OFF)");
25 }
26
27 void loop() {
28 // read the status of the Program Switch value:
29 ProgramStatus = digitalRead(ProgramPin);
30 // check if Program select choice is 1.0N
31 if (ProgramStatus == HIGH) {
32 4
```



Simulate circuits: Observe how components respond virtually before building a real-life circuit.

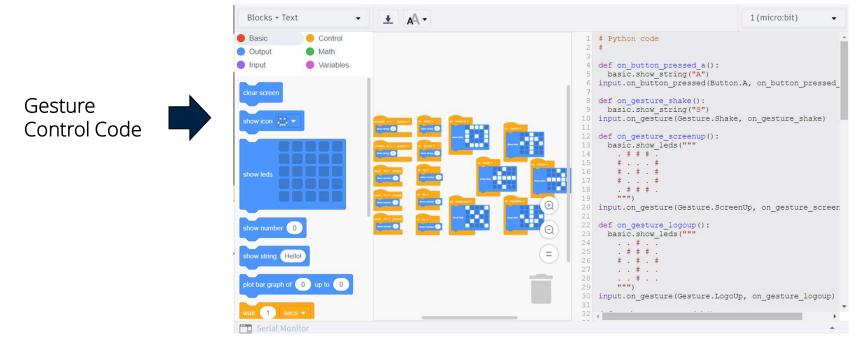

Predictive Maintenance: Pushbutton Switch Fault Detection Model

Use a breadboard view: The presented graphics provide a physical view of the electronic components used in real life.



Use a Blocks + Text view: Explore coding possibilities using blockly code while the same programming concepts are presented in Python and C++.

Gesture Control Device



Use a Blocks + Text view: Explore coding possibilities using blockly code while the same programming concepts are presented in Python and C++.

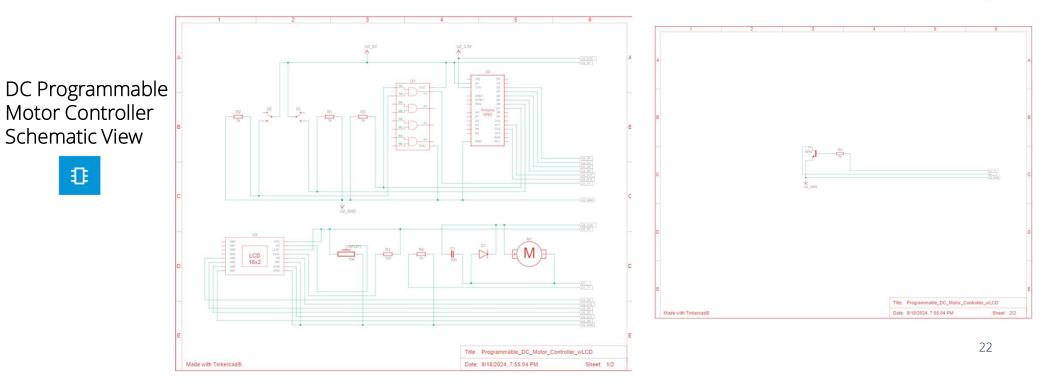
Use a Blocks + Text view: Explore coding possibilities using blockly code while the same programming concepts are presented in Python and C++.

6 Tap the Play button to run the program and apply the codes to the controller.

Tinkercad Circuits Blockly Code aligns with Real World Machines

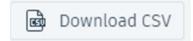
Question 3

Tinkercad Circuits Blockly code aligns with what realworld machine?


- a) Dishwasher
- **b)** Autonomous Vehicle
- c) Collaborative Robot
- d) VCR

Electronic Circuit Schematic Generation: Placing electronic components onto a solderless breadboard automatically generates an electronic circuit schematic diagram for project documentation.

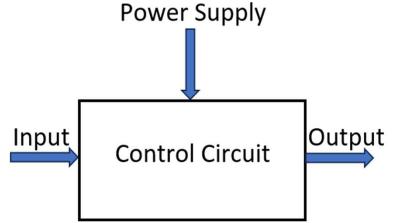
Component List Generation: Automatically capture the circuit design's Bill Of Materials (BOM) for project documentation.


	Component List			Download CSV
DC Programmable	Name	Quantity	Component	
DC Programmable Motor Controller Component List View	U1	1	Quad AND gate	
	S1 S2	2	Slideswitch	
	R1 R2 R3 R5 R6	5	1 kΩ Resistor	
	U2	1	Arduino Uno R3	
	U3	1	LCD 16 x 2	
	R4	1	100 Ω Resistor	
	Rpot1	1	10 kD Potentiometer	
	Meter1	1	Voltage Multimeter	
	M1	1	DC Motor	
	D1	1	Diode	
	CI	1	10 nF Capacitor	
	TI	1	NPN Transistor (BJT)	23
				23

Component List Generation: Automatically capture the circuit design's Bill Of Materials (BOM) for project documentation.

DC Programmable Motor Controller CSV View

Name	Quantity	Component
U1	1	Quad AND gate
S1, S2	2	Slideswitch
R1, R2, R3,	5	$1 k\Omega Resistor$
U2	1	Arduino Uno R3
U3	1	LCD 16 x 2
R4	1	$100\OmegaResistor$
Rpot1	1	$10k\OmegaPotentiometer$
Meter1	1	Voltage Multimeter
M1	1	DC Motor
D1	1	Diode
C1	1	10 nF Capacitor
T1	1	NPN Transistor (BJT)



Hands-On With Tinkercad Circuits

Tinkercad Circuits allows the opportunity to build a virtual interactive model: A Minimum-Viable Prototype (MVP).

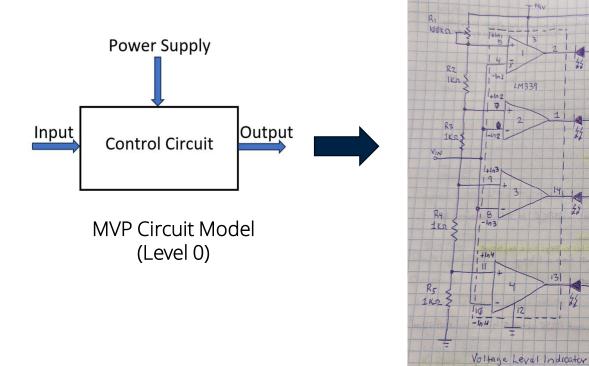
What is an MVP?

An MVP is a design approach that helps quickly create, test, launch, and improve products.

Question 4

What is an MVP?

- a) Most Viable Product
- **b) Minimum Viable Product**
- c) Most Viable Prototype
- d) Minimum Viable Prototype


eu

Hands-On With Tinkercad Circuits...

A Minimum-Viable Prototype (MVP): Voltage Level Indicator.

Hand-Sketched **Electronic Circuit** Schematic diagram (Level 3)

LM 339

IK

IK

IK

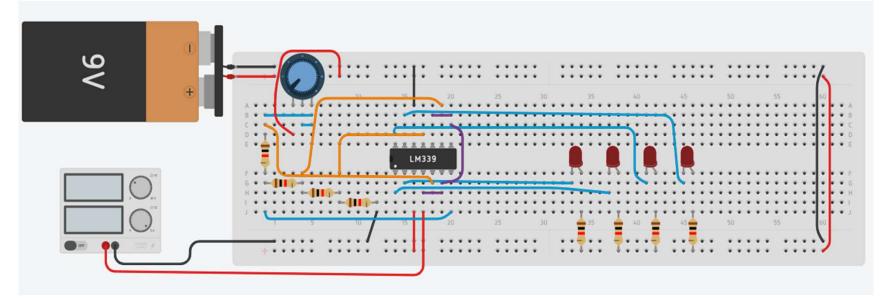
m

IK

-m

55

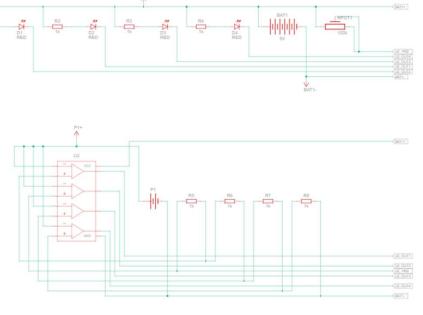
55



Hands-On With Tinkercad Circuits...

A Minimum-Viable Prototype (MVP): Voltage Level Indicator Virtual MVP

An Interactive Voltage Level Indicator Virtual MVP

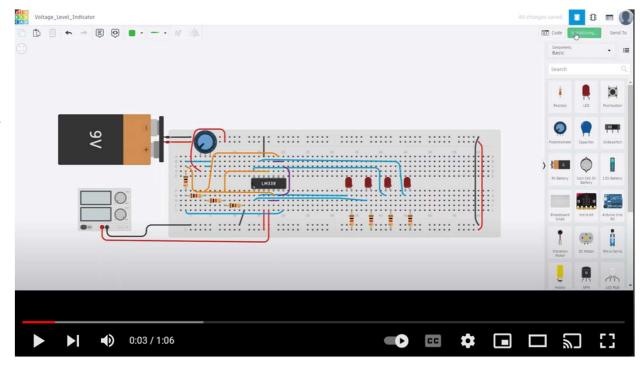


Hands-On With Tinkercad Circuits...

A Minimum-Viable Prototype (MVP): Voltage Level Indicator Virtual MVP

Watch the Interactive Voltage Level Indicator Virtual MVP video clip: <u>https://youtu.be/qxsQXgbWRNE</u>

An Interactive Voltage Level Indicator Virtual MVP: Electronic Circuit Schematic Diagram



DigiKey

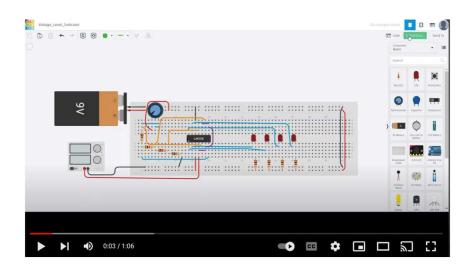
Hands-On With Tinkercad Circuits...

A Minimum-Viable Prototype (MVP): Voltage Level Indicator Virtual MVP

Watch the Interactive Voltage Level Indicator Virtual MVP video clip: <u>https://youtu.be/qxsQXgbWRNE</u>

30

DigiKey


Hands-On With Tinkercad Circuits...

A Minimum-Viable Prototype (MVP): Voltage Level Indicator Virtual MVP

Here is a copy link to explore the Voltage-Level Indicator. Upon receiving the model, change the name immediately to prevent others from modifying your copy's design!

https://www.tinkercad.com/things/lzfXtMVp5IV-copy-ofvoltagelevelindicator/editel?sharecode=pxEaVAQls04ZkJrr Z5pzrF0VnuYehWgLCs-N64iDqMM

Question 5

What MVP device was presented in the Hands-On With Tinkercad Circuits discussion?

- a) Voltage Level Detector
- b) Voltage Level Meter
- c) Voltage Level Alarm
- d) Voltage Level Indicator

Thank you for attending

DesignNews

Thank You

Sponsored by

