

DesignNews

Exploring Electronic Circuits with Breadboards, AI Circuit Analysis, and Simulators

DAY 2: Electronic Circuit Schematic Diagrams – KiCad and Microcap

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

Course Kit and Materials

Adafruit Parts Pal Kit

Research Perspective

"Breadboards are widely used in early-stage circuit prototyping since they enable users to rapidly try out different components and to change the connections between them" (Zhu et al., 2020).

Agenda:

- The Purpose of Electronic Circuit Schematic Diagrams In Industry
- Introduction to Micro-Cap

 a) Layout of the Micro-Cap Software Environment
 b) Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity
- Introduction to KiCAD

 a) Layout of the KiCAD Software Environment
 b) Drawing a 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram Activity

The Purpose of Electronic Circuit Schematic Diagrams in Industry

Due to these factors, electronic circuit schematic diagrams play an important role in the industry.

- Provide a clear visual representation of how components in a circuit are connected.
- Allowing for easier understanding of products of
 - a) design.

Continuing Education

- b) communication.
- c) troubleshooting.
- d) analysis of complex electrical systems.
- Enabling engineers and technicians to quickly grasp circuit functionality.
- Identify potential issues without needing to examine the device itself physically.

The Purpose of Electronic Circuit Schematic Diagrams in Industry...

Continuing Education

Key benefits of Electronic Circuit Schematic Diagrams in Industry.

- Improved communication- Standardized symbols and layouts for clear communication of circuit designs.
- Design and Planning Schematics allow engineers to visualize and plan circuit layouts before physical construction begins.
- Troubleshooting Schematic Diagrams help technicians to identify the source of electronic circuit problems.
- Simulation and Analysis Schematic Diagrams can be used as input for computer simulations. Allowing circuit behavior to be tested under specific conditions.
- Documentation Schematic Diagrams preserve design details and facilitating future modifications or maintenance.

Question 1

Schematic diagrams can be used as output for computer simulations.

a) True b) False

Introduction to Micro-Cap Software

- Is a freeware analog and digital circuit simulator that provides an interactive environment for electronic engineers to build and simulate virtual designs.
- The software was designed by Spectrum Software.
- Spectrum Software shuttered the company's domain in July 2019.
- Spectrum Software's website went offline in early 2023.
- Micro-Cap Software can be obtained from archive.org.
- Version 12 can be obtained from the following web link: <u>https://archive.org/details/mc12cd_202108</u>.

Introduction to Micro-Cap Software...

Micro-Cap is a powerful software tool that can be used to:

- build circuits.
- explore circuit operations.
- learn about circuits.
- perform sensitivity analysis.
- worst case analysis.
- transient analysis.
- create macro-model functions of specific circuits.

Although software is no longer supported, the features listed are important in the design and analysis of electronic circuits.

Introduction to Micro-Cap Software...

What is a Macro-model?

A compact circuit that emulates the behavior of a real circuit or device without modeling each of its elements.

Micro-Cap software was designed by

- a) Simply Software
- b) Software Simply
- c) Software Spectrum
- d) Spectrum Software

eu

Introduction to Micro-Cap Software...

AMP

This block provides a simple linear amplifier. Its definition is:

$V_{Out}(t) = gain V_{In}(t)$

The function is implemented with the AMP macro:

Macro-model Examples

Figure 25-3 AMP macro circuit

The single input parameter, GAIN, multiplies the input to produce an amplified output. This implementation uses a simple linear dependent VOFV source. It could have been done with a Function source or a Spice poly source. In general, the simplest type of source that will perform the function is preferred.

PID Controller

The PID (Proportional-Integral-Derivative) controller is a common feedback mechanism used within closed loop control systems. The controller automatically adjusts a variable to keep a specified measurement at a set point. It can be found in temperature, flow, and position control applications. The macro employs other math function macros, SUB, AMP, INT, DIF, and SUM.

Parameter	Definition
KP	Proportional scale value
KI	Integral scale value
KF	Derivative scale value

Introduction to Micro-Cap Software...

555

The 555 is a model of the ubiquitous 555 timer circuit. Its circuit is as follows:

555 TIMER MACRO VCC RESET 100 COAT THREE OATE 1095 C PRED OISCH **JRIG** 1692 OND The 555 marro assumes that you are running it at 5V. If you have different power supplies in your schematic, add the following param statements to your main schematic and change the values. accordingly param V565_VDD=5V param V565_VSS=0V These param statements change the analog/digital interface power for the mixed mode connections of the macro.

Figure 25-57 555 macro circuit

Macro-Model Examples

Introduction to Micro-Cap Software...

555

The 555 is a model of the ubiquitous 555 timer circuit. Its circuit is as follows:

555 TIMER MACRO VCC RESET 100 COAT THREE OATE 1095 C PRED OISCH **JRIG** 1692 OND The 555 marro assumes that you are running it at 5V. If you have different power supplies in your schematic, add the following param statements to your main schematic and change the values. accordingly param V565_VDD=5V param V565_VSS=0V These param statements change the analog/digital interface power for the mixed mode connections of the macro.

Figure 25-57 555 macro circuit

Macro-model Examples

Layout of Micro-Cap Software Environment

In reviewing slide 14, the AMP block provides a simple linear amplifier defined by a:

- a) picture
- b) text
- c) mathematical equation
- d) none of the above

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity

Adding a 555 Timer

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity

DECTET	11/25		Valu	e		-	Chan C		▲ 、
Display	AVVLE	1 Sha	W I NO				SHOW C	hange	<u> </u>
☐ Pin M	1arkers ∏ P	in Names	Pin Numb	ers 🔽 Cu	irrent 🔽 Pi	ower 🔽 Co	ndition	Border 🍤 🕅	
PART	Γ=R3						Imp	edance vs. F	•
FREC	STANCE=1	IOK							
MOD	EL=						6	196	
SMO	KE=						C6	2%	1
COS	- T=						C6 CCF	5% -07_G	
POW	FR=						CCF	-07_1	
OK	Cancel	Font	Add	Delete	Browse	Combination	s cor	-55	
New	Find	Plot	Syntax	IBIS	Help	Single	머머	_1% _1/2%	
Enabled	TRUE		•	Column	5 3	Ŧ			
✓ Help Ba	ar .					File Link			
Show D	ata on Exit				Source: Loc	al page 'Models	e		
	CP und	defined		LS	undefined		NM	1	*
	R 1			T_ABS	undefined	T,	MEASURED	undefined	
T_REL_O	SLOBAL uni	defined	T_RI	EL_LOCAL	undefined		TC1	0	
	TC2 0			TCE	0				~

Adding an output load resistor

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Adding the trigger capacitor

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Before simulating the 555 Timer Astable Multivibrator circuit, perform the following analysis. Determining the output frequency (f) of the 555 Timer Astable Multivibrator circuit.

f = 1/Ttotal = 1/23ms = 43.4Hz		
Where:		
f is the frequency Ttotal is the total time		
tlow = 0.693+ R2C1 = 0.693 + (20KΩx680nF) = 9ms	thigh = 0.693 (R1 + R2)C1 = 0.693(10KΩ+20KΩ)680nF = 14ms	Ttotal = tlow+thigh = (9 +14)ms =23ms

Question 4

What output frequency is produced with an R2 value of 10KΩ for a 555 Timer Astable Multivibrator circuit? a) 500Hz

- b) 700Hz
- c) 1.45KHz
- d) 1.410KHz

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Set the time in simulation using 23ms as the timebase. To display 3 cycles of the squarewave output, the maximum time will be 69 ms. Go to **Analysis** (the top toolbar), and select **Transient**. **Analysis**>**Transient**. Click the Run button to execute the simulation.

	Transient Analysis Limi	ts				_		×
Add 69ms Here!	Run Add Maximum Run Time Output Start Time (tstart) Maximum Time Step Number of Points Temperature Linear Retrace Runs	Delete Expan 69m 0 0 51 27 1	Run Options State Variable Operating Auto Scale	PSS Normal S Zero Point Point Only e Ranges	Properties Help Help Help Help Help Help Help Help Help Help Help Help Help Help Help Help Help Help Help]		
	Ignore Expression Errors	Page P X	(Expression	v(1) v(2)	Y Expression	X Range 0.072,0,0.0144 0.072,0,0.0144	Y Range 16,-4,4 16,-4,4	_ >

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Simulation Results: Exit out of the simulation, Click Transient then Exit Simulation. Transient>Simulation

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

To obtain multiple circuit points (nodes) for probing voltages use, Analysis >Probe Transient.

Build and Simulate a 555 Timer Astable Multivibrator Circuit Activity...

Results of **Analysis >Probe Transient**.

- a) 555 Timer Astable Multivibrator Squarewave output
- b) Charging/Discharging of the 680nF (C1) capacitor

Introduction to KiCad Software

- Is a free software suite for Electronic Design Automation (EDA).
- The software facilitates the design and simulation of electronic hardware for Printed Circuit Board (PCB) manufacturing.
- The software features an integrated environment for:
 - a) schematic capture.
 - b) PCB layout.

Continuing Education Center

- c) manufacturing file viewing
- d) ngspice (open-source SPICE) simulation
- e) engineering calculation

Note:

SPICE is Simulation Program with Integrated Circuit Emphasis

Layout of KiCad Software Environment...

Drawing A 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram Activity ...

Adding the 555 Timer IC to the Schematic Editor

Choose Symbol (17110 items loaded)

555		
em	Description	
4xxx_IEEE	4xxx series IEEE symbols	
> 4555		
Timer	Assorted timer devices	
LM555xM	Timer, 555 compatible, SOIC-8	
LM555xMM	Precision Timers, 555 compatible, VSSOP-8	
LM555xN	Timer, 555 compatible, PDIP-8	
NA555D	Precision Timers, 555 compatible, SOIC-8	
NA555P	Precision Timers, 555 compatible, PDIP-8	
NE555D	Precision Timers, 555 compatible, SOIC-8	
NE555P	Precision Timers, 555 compatible, PDIP-8	
SA555D	Precision Timers, 555 compatible, SOIC-8	
SA555P	Precision Timers, 555 compatible, PDIP-8	
SE555D	Precision Timers, 555 compatible, SOIC-8	
CCCCCCD	Precision Timers 555 compatible PDIP-8	

Footprint Package_DIP:DIP-8_W7.62mm

Datasheet http://www.ti.com/lit/ds/svmlink/lm555.pdf

Select with Browser Place repeated copies Place all units 🗹

Drawing A 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram Activity ...

Adding a resistor to the schematic editor

Choose Symbol (17113 items loaded)

Q, resistor		8
Item	Description	
R_Potentiometer_US	Potentiometer, US symbol	
Thermistor_PTC	Temperature dependent resistor, positive temperature coefficient	
Thermistor_PTC_3Wire	Temperature dependent resistor, positive temperature coefficient, 3-wire interface	
Thermistor_PTC_4Wire	Temperature dependent resistor, positive temperature coefficient, 4-wire interface	
Thermistor_PTC_US	Temperature dependent resistor, positive temperature coefficient, US symbol	
R_Small	Resistor, small symbol	
R_Small_US	Resistor, small US symbol	
R	Resistor	
R_Trim	Trimmable resistor (preset resistor)	•
R_US	Resistor, US symbol	
R_Variable	Variable resistor	No default footprint
R_Variable_US	Variable resistor, US symbol	
Heater	Resistive heater	
R_Shunt	Shunt resistor	
R_US Resistor, US symbol Keywords: R res resistor		No footprint specified
Reference R? Footprint Datasheet ~		

Select with Browser Place repeated copies Place all units

OK

Cancel

Adding a capacitor to the schematic editor

Choose Symbol (17112 Items loaded)		×
Q capa		
Item	Description	
✓ Device	Generic symbols for common devices	
D_Capacitance	Variable capacitance diode	
D_Capacitance_Filled	Variable capacitance diode, filled shape	
C_Small	Unpolarized capacitor, small symbol	
Microphone_Condenser	Condenser microphone	
С	Unpolarized capacitor	
C_Polarized	Polarized capacitor	
C_Polarized_Small	Polarized capacitor, small symbol	
C_Polarized_Small_US	Polarized capacitor, small US symbol	
C_Polarized_US	Polarized capacitor, US symbol	
C_Trim_Differential	Differential variable capacitor with two stators	No default footprint ~
C_Variable	Variable capacitor	
C_Feedthrough	Feedthrough capacitor	
C_Trim	Trimmable capacitor	
C Unpolarized capacitor Keywords: cap capacitor		No footprint specified
Ecotorint		
Potprint		
Datasheet ~		
Select with Browser Place repeated cop	pies 🗌 Place all units 🕗	OK Cancel

Drawing A 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram Activity ...

Placing a ground onto the schematic editor

k Choose Power Symbol (102 items loaded) ᆦ Q Filter 0 Item Description -VDC Power symbol creates a global label with name "-VDC" -VSW Power symbol creates a global label with name "-VSW" AC Power symbol creates a global label with name "AC" Earth Power symbol creates a global label with name "Earth" Farth Clean Power symbol creates a global label with name "Earth_Clean" 3 Earth_Protective Power symbol creates a global label with name "Earth_Protective" GND Power symbol creates a global label with name "GND", ground × Power symbol creates a global label with name "GND1", ground GND1 GND2 Power symbol creates a global label with name "GND2", ground GND3 Power symbol creates a global label with name "GND3", ground GNDREF <u>A</u> GNDA Power symbol creates a global label with name "GNDA", analog ground GNDD Power symbol creates a global label with name "GNDD", digital ground GNDPWR Power symbol creates a global label with name "GNDPWR", power ground AO GNDREE Power symbol creates a global label with name "GNDREF", reference supply ground 80 Power symbol creates a global label with name "GNDS", signal ground GNDS HT Power symbol creates a global label with name "HT" AO LINE Power symbol creates a global label with name "LINE" NEUT Power symbol creates a global label with name "NEUT" 57 Dennes entre el escader el ele el le el mile el este el PODI I II Т GNDREF Power symbol creates a global label with name "GNDREF", reference supply ground Keywords: power-flag 10 Select with Browser Place repeated copies D Place all units 🗹 OK Cancel

Orientation and location of the 555 Timer Astable Multivibrator Electronic components on to Schematic Editor.

The completed 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram

The completed 555 Timer Astable Multivibrator Electronic Circuit Schematic Diagram

Question 5

What symbol is used to obtain parts to place on the KiCad Schematic editor?

- a) resistor
- b) line
- c) gnd
- d) operational amplifier

Thank you for attending

Please consider the resources below:

Kicad. (n.d.). *Getting started with kicad 6.0*. <u>https://docs.kicad.org/6.0/en/getting_started_in_kicad/getting_started_in_kicad.html</u>

DesignNews

Thank You

Sponsored by

