Continuing
‘ E‘ Education
Center

Writing Microcontroller Drivers in Rust

DAY 2:The Peripheral Access Crate

Sponsored by

BENINGO

EMBEDDED GROUP

©2023 Beningo Embedded Group; LLC, All Rights-Reserved.

News

- AQ)j informamarkets

cECER [smvnee
Center EMBEDDED GROUP

Webinar Logistics

 Turn on your system sound to hear the streaming presentation.

* If you have technical problems, click “Help” or submit a question
asking for assistance.

* Participate in ‘Group Chat’ by maximizing the chat widget in your
dock.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [smvnee
Center EMBEDDED GROUP

Beningo Embedded Group - CEO / Founder

Focus: Embedded Software Consulting and Training

THE SPEAKER

Help teams deliver higher-quality embedded software faster. We specialize in creating
and promoting embedded software excellence in businesses around the world.

Embedded

MicroPython
P cts
: Software

Reusable
Firmware

Development Design

Blogs for:
DesignNews.com « EmbeddedRelated.com

Jacob Beningo
* Embedded.com * MLRelated.com

Visit (www.beningo.com) to learn more

LN N k
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://www.beningo.com/about/
http://www.beningo.com/

BENINGO

EMBEDDED GROUP

CEC k&5

The Peripheral Access
Crate (PAC)

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEER [eEnineo
Center

EMBEDDED GROUP

Crates
Overview

« Acrateis a compilation unit in Rust.

Microcontroller
« Rust treats each *.rs file as a crate file. Manages CPU/Core and common (STM32F3)

pe=_ Deripherals (systick)

« There are several types of crates for embedded

Micro- Microprocessor
developers architecture Crate (ARM Cortex)
Board Crate HAL Crate | == aoc | ario
Peripheral Access >
ackages everything for a ser-frien . Memor
anidfgmducjiéh . ﬁttps:]/C/cratdehs/.il;)'/Acl;ates/e Crate (PAC) d
preconfiguration mbedded-hal
Wrapper around memory- USB
— Mapped peripheral registers.
A —————
High level of abstraction Low level of abstraction

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

The Peripheral Access Crate (PAC) ,

. Micro- | | Microprocessor
D Eﬂ ne d architecture Crate (ARM Cortex)
Board Crate HAL Crate | == aoc | erio
Peripheral Access
Crate (PAC) Memory || 12C
What is the PAC? - v | |
High level of abstraction Low level of abstraction

» PAC stands for Peripheral Access Crate.
. . .) #![no_std]
» Provides direct, low-level access to a microcontroller's peripherals. #![no_main]

* Auto-generated from the microcontroller's SVD (System View Description) use panic_halt as _; // panic handler

files, ensuring accuracy and completeness. use cortex_m_rt::entry:

use tm4cl23x;

#[entry]
Key Features pub fn init() -> (Delay, Leds) {
let cp = cortex_m::Peripherals::take().unwrap();

+ Type Safety: Utilizes Rust's type system to prevent common bugs (e.g., leis o & CemEt e Fe pasreen Fa e e)

invalid register access). let pwm = p.PWMO;
= p. ;

« Memory Safety: Ensures safe access to peripheral registers, mitigating risks el] vl e s e el
// Mode = 1 => Count up/down mode
of[T]enjory Corrupthjn_ pwm._2_ctl.write(|w| w.enable().set_bit().mode().set_bit());
pwm._2_gena.write(|w| w.actcmpau().zero().actcmpad().one());
« Concurrency Safety: Facilitates safe sharing of peripherals between tasks in // 528 cycles (264 up and down) = 4 loops per video line (2112 cycles)
) pwm._2_load.write(|w| unsafe { w.load().bits(263) });
concurrent environments. pwm._2_cmpa.write(|w| unsafe { w.compa().bits(64) });

pwm.enable.write(|w| w.pwmden().set_bit());

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

The Peripheral Access Crate (PAC)

How it works

How PACs Work:

» Each PAC corresponds to a specific microcontroller or family, encapsulating all peripheral
Use Cases:

« Custom driver development for
peripherals not covered by existing
libraries.

definitions.
« Developers interact with hardware registers directly, using strongly-typed Rust structs and
enums.
« Provides the foundation for higher-level abstractions, like HALs (Hardware Abstraction Layers).
High-performance, low-level embedded

Benefits: applications requiring fine-grained

hardware control.
» Accuracy: Reflects the microcontroller's hardware design accurately, enabling precise control

over hardware features.

Learning and teaching purposes,
« Efficiency: Low overhead, direct manipulation of hardware registers without intermediate pro\/iding ingightg into microcontroller

abstractions. architecture and peripheral
+ Flexibility: Allows for advanced techniques and optimizations specific to the hardware's programming.

capabilities.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [smvnee
Center EMBEDDED GROUP

Audience POLL Question

Which of the following is a key feature of the PAC?
a) Type safety
D) Memory safety
c) Concurrency safety
d) All the above
)

e) None of the above

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEE [°ENNeo
Center

EMBEDDED GROUP

Introducing svd2rust

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

The Peripheral Access Crate (PAC)

Peripheral Access Crates

svd2rust is a command-line tool in the Rust embedded ecosystem @ crates.io B © srousenacrates | a Loginwit Github

designed to generate Rust Peripheral Access Crates (PACs) from vdZrst s

SySt em \/| ew De SC r| pU on (S\/D) ﬂ | es. Generate Rust register maps (‘struct’s) from SVD files

70 Versions Dependencies Dependents

SVD files are XML documents that describe the hardware

peripherals of a microcontroller, including registers and their e e L Metadata

license MIT OR Apache-2.0 dependencie @) () Continuous integration m‘ - 20
L) ays ago

. . . ® v1.74.0
bitfields, in a standardized format. svd2Tust o e he20

& 79.5 KiB

Generate Rust register maps (struct s) from SVD files

Install
This project is developed and maintained by the

Key Feat U reS: ' Run the following Cargo command in your

project directory:

« Code generation Cavgo add svdzzust

. DOCU m entatlon Minimum Supported Rust version (MSRV) Or add the following line to your Cargo.toml:

svd2rust = "0.33.3"
The generated code is guaranteed to compile on stable Rust 1.65.0 and up.

° Ze ro- RU n _Tl me COSt AbStra Ctl ons If you encounter compilation errors on any stable version newer than 1.65.0, Documentation

please open an issue.

&

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education’ BENINGO

Center EMBEDDED GROUP

Session Goals
The STM32L475 loT Discovery Board

A feature-rich development tool designed for IoT applications,

leveraging the power of the STM32L475VGT6 microcontroller, E) Sonee 9 X1k

-1!8@

_—J - - N g |t (S|
: —u '.m.,\“: D13 *012 D11 nml:?'lﬁ)?i 07 08 DS
15090-11-4219 |y |l W M—rm | om
« Equipped with an ARM Cortex-M4 core that operates at up to 80 ol - :“Ef A e A
A = g
MHz with 1 MB of Flash memory and 128 KB of SRAM. ‘L_,i - %
38 N

 Includes modules for Bluetooth® Low Energy (BLE), Sub-GHz RF,
Wi-Fi, and a dynamic NFC-tag with a printed antenna

-
Ual e

T & 5y
g ;é;.;é

« A comprehensive collection of built-in sensors for motion, gesture, e, = [BLamEOTOA]
and environmental sensing, including a MEMS accelerometer,

gyroscope, magnetometer, barometric pressure sensor,

temperature/humidity sensor, and more.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

EMBEDDED GROUP

CECEER [sEninco
Center

Creating a PAC with svd2rust
The STM32U575 Nucleo Board

)

A feature-rich development tool designed for |oT

R -

o =L
»

C

$ 238 "

> -i'
.i- ¥ %
)

5000000000000003 = 5 i*

applications, leveraging the power of the
STM32U575Z1-Q microcontroller.

00000

000

« Equipped with an ARM Cortex-M33 core that
operates at up to 160 MHz with 2 MB of Flash
memory and 784 KB of SRAM.

e Includes Red, Green, and Blue user LEDs, USB,

Arduino Headers, user push button, and more.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [smvnee
Center EMBEDDED GROUP

Audience POLL Question

Will you be trying to generate your own PAC?
a) Yes
D) NoO

13
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CEC k&5

BENINGO

EMBEDDED GROUP

Creating a PAC with
svd2rust

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

14

CECEER [eEnineo
Center

EMBEDDED GROUP

Creating a PAC with svd2rust

Running svd2rust

Update Rust:

rustup update

Install the tool:

cargo install svd2rust

Create a new library project:

cargo new stm32u575 pac --1ib

v RUSTDEVL4
> docker
> hello_world
> stm32-14-hello
v stm32|475_pac
.gitignore
build.rs
Cargo.toml|
= device.x
lib.rs
N STM32L4x5.svd
> svd

$ devManager.sh

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEER [eEnineo
Center

EMBEDDED GROUP

Creating a PAC with svd2rust
Getting your SVD file

- SVD Files are available from Silicon Vendor ~ STM32L4x5.5VD Download
» Place the SVD into your project directory

Title Product Assaciations Version

* Run the tool

STM32L486.G

svd2rust —i <device>.svd FE—

root@5c09a94cbcch: /home/app/stm321475_pac# svd2rust —i STM32L4x5.svd htt,DSi//V\/VVVV.St.COm/COﬂteﬂt/CCC/FeSOUrCe/tECh nical

INFO svd2rust] Parsing device from SVD file
INFO svi2rust] Rendering device /ecad_models and_symbols/svd/group0/9¢/fe/a9/9

root@5c09ad4cbect: /home/app/stm321475_paci i 8/0f/5a/42/b6/stm3214_svd.zip/files/stm3214 _svd.zi
p/jcr.content/translations/en.stm3214 svd.zip

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://www.st.com/content/ccc/resource/technical/ecad_models_and_symbols/svd/group0/9c/fe/a9/98/0f/5a/42/b6/stm32l4_svd.zip/files/stm32l4_svd.zip/jcr:content/translations/en.stm32l4_svd.zip
https://www.st.com/content/ccc/resource/technical/ecad_models_and_symbols/svd/group0/9c/fe/a9/98/0f/5a/42/b6/stm32l4_svd.zip/files/stm32l4_svd.zip/jcr:content/translations/en.stm32l4_svd.zip
https://www.st.com/content/ccc/resource/technical/ecad_models_and_symbols/svd/group0/9c/fe/a9/98/0f/5a/42/b6/stm32l4_svd.zip/files/stm32l4_svd.zip/jcr:content/translations/en.stm32l4_svd.zip
https://www.st.com/content/ccc/resource/technical/ecad_models_and_symbols/svd/group0/9c/fe/a9/98/0f/5a/42/b6/stm32l4_svd.zip/files/stm32l4_svd.zip/jcr:content/translations/en.stm32l4_svd.zip

EMBEDDED GROUP

CECEER [eEnineo
Center

Creating a PAC with svd2rust

Understanding svd2rust output

v RUSTDEVL4

S docker Build script
> hello_world « Conditional compilation
> stm32-l4-hello - Device.x handling

v stm321475_pac
.gitignore
build.rs

* Linker configuration

+ Build dependency tracking

Cargo.toml

= device.x /

Linker fragment for interrupts

—Peripheral Implementation

lib.rs
N STM32L4x5.svd « Not “clean”, or easily readable
> svd

$ devManager.sh

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

Creating a PAC with svd2rust

Separate and Format Modules

stm321475_pac > lib.rs > {} generic > =0 Writable

. ' .
|nSta|| fO rm (lfyou dont ha\/e |t a|ready) # ! [doc = "Peripheral access API for STM32L4X5 microcontrollers (generated using svd2rust v@

svd2rust release can be generated by cloning the svd2rust [repositoryl]l, checking out the abovd
! [allow (non_camel_case_types)]

Cargo install form # ! [allow (non_snake_case)]
! [no_std]
use core :: ops :: Deref ; use core :: marker :: PhantomData ; # [doc = r"Number available in
Remove Src onst NVIC_PRIO_BITS : u8 = 4 ; # [allow (unused_imports)]
> generic :: x ; # [doc = r"Common register and bit access and modify traits"]
i generic { use core :: marker ; # [doc = " Raw register type (‘u8', ‘ul6’, ‘u32’,
ait RawReg : Copy + Default + From < bool > + core :: ops :: BitOr < Qutput = Self
rm _rf Src fn mask < « WI : u8 > () —> Self ; # [doc = " Mask for bits of width 1"]
1 one () f ; } macro_rules ! raw_reg { ($ U : ty , $ size : literal , $ mask : ident)
. . . fn mask < ¢ : ug > { $ mask ::< WI > () } # [inline (always)]
Split lib.rs into separate modules fn one () —> Self { 1} } const fn $ mask < const WL : u8 > () => $ U { <8 U >z MAX >> (§ si
ait RegisterSpec { # [doc = " Raw register type (‘u8', “ul6’, ‘u32’, ...)."]
t : RawReg ; } # [doc = " Raw field type"]
form _i lib.rs -0 SIC/ §& rm lib.rS it FieldSpec : Sized { # [doc = " Raw field type ("u8", ’ulﬁ': Eu320 e)

: Copy + core :: fmt :: Debug + PartialEq + From < Self > ; } # [doc = " Marker for f
IsEnum : FieldSpec { } # [doc = " Trait implemented by readable registers to enable

Format to be human readable and “C|ea n” " Registers marked with ‘Writable® can be also be "modify’ 'ed."]

t Readable : RegisterSpec { } # [doc = " Trait implemented by writeable registers."]
iy
Cargo fmt " This enables the ‘write’, ‘write_with_zero® and ‘reset’ methods."]
wnf]
" Registers marked with “Readable’ can be also be ‘modify’ 'ed."]
t Writable : RegisterSpec { # [doc = " Is it safe to write any bits to register"]

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

Creating a PAC with svd2rust

Add dependencies to the toml

Add to TOML file:

[dependencies]

Provides a mechanism for creating critical sections within your code, allowing you to
prevent race conditions and ensure data consistency when accessing shared
resources from multiple contexts, such as interrupt service routines (ISRs) and the

main program.

critical-section = { version ="1.1.2", optional = true }

cortex-m ="0.7.7"

Offers low-level access to core ARM Cortex-M functionality, such as registers and

instructions specific to these microcontrollers

cortex-m-rt = { version ="0.7.3", optional = true }

veell ="0.1.3"

Provides runtime support for ARM Cortex-M microcontrollers, including startup

code, linker scripts, and definitions for the interrupt vector table.

[features]

rt = ["cortex-m-rt/device"]

Offers volatile cell types, enabling safe read and write operations to memory-

mapped peripheral registers.

This feature flag is typically used to conditionally compile parts of the application

that require runtime support, such as startup code and interrupt handling.

Check Rust Documentation for latest version #'s

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Equcation BENINGO

Center EMBEDDED GROUP

Creating a PAC with svd2rust

Build the crate

Build the crate:
(base) beningo@lacobs-MacBook-Pro stm32u575_pac % cargo build -r

Compiling proc-macro2 v1.0.85
cargo build —-r Compiling semver-parser v0.7.0
Compiling unicode-ident v1.0.12
Compiling syn v1.0.109
Compiling cortex-m-rt v0.7.3
Compiling cortex-m v@.7.7
Compiling nb v1.1.0
Compiling vcell v0.1.3
Compiling void v1.0.2
Compiling bitfield v@.13.2
Compiling stm32U575_pac v@0.1.0 (/Users/beningo/Projects/03-Rust/svd2rustU5/stm32u575_pac)
Compiling volatile-register v@0.2.2
Compiling nb v0.1.3
Compiling embedded-hal v0.2.7
Compiling semver v0.9.0
Compiling rustc_version v0.2.3
Compiling bare-metal v@.2.5
Compiling quote v1.0.36
Compiling cortex-m-rt-macros v@.7.0
Finished release [optimized] target(s) in 23.50s
(base) beningo@Jacobs-MacBook-Pro stm32u575_pac % |

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [smvnee
Center EMBEDDED GROUP

Audience POLL Question

What is the device.x file?

a) Build script

D) Linker fragment

C) Peripheral implementation
d) None of the above

21
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Next Steps

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

22

cECER [smvnee
Center EMBEDDED GROUP

Embedded Rust Docker Container

* https://mailchi.mp/beningo/embedded rust docker con BeningeRustDocker Container

tainer

e Rust Toolchain
* Embedded Tools

23

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://mailchi.mp/beningo/embedded_rust_docker_container
https://mailchi.mp/beningo/embedded_rust_docker_container

cECER [smvnee
Center EMBEDDED GROUP

Additional Resources

Please consider the resources below:

 Jacob's Blogs

e |acob's CEC courses
« Embedded Software Academy

- Embedded Bytes Newsletter

« Nttp:/bit.ly/1BAHYXm

24

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://www.beningo.com/blog/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/embedded-software-academy/
http://bit.ly/1BAHYXm
https://www.beningo.com/about/

Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

BENINGO

EMBEDDED GROUP

News

Q) informamarkets

	Slide 1: Writing Microcontroller Drivers in Rust
	Slide 2: Webinar Logistics
	Slide 3
	Slide 4
	Slide 5: Crates
	Slide 6: The Peripheral Access Crate (PAC)
	Slide 7: The Peripheral Access Crate (PAC)
	Slide 8: Audience POLL Question
	Slide 9
	Slide 10: The Peripheral Access Crate (PAC)
	Slide 11: Session Goals
	Slide 12: Creating a PAC with svd2rust
	Slide 13: Audience POLL Question
	Slide 14
	Slide 15: Creating a PAC with svd2rust
	Slide 16: Creating a PAC with svd2rust
	Slide 17: Creating a PAC with svd2rust
	Slide 18: Creating a PAC with svd2rust
	Slide 19: Creating a PAC with svd2rust
	Slide 20: Creating a PAC with svd2rust
	Slide 21: Audience POLL Question
	Slide 22
	Slide 23: Embedded Rust Docker Container
	Slide 24: Additional Resources
	Slide 25: Thank You

