

Getting Started in Automation with Arduino

DAY 2: Understanding the Arduino Opta

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

Agenda:

- Arduino Opta System Structure
- Input/Output (I/O) wiring structure
- An Introduction to Ladder Diagram Programming Concepts
- Lab: Hello World Ladder Diagram Program

"Programmable Logic Controller (PLC) is the most important component in industrial automation, and it has become one of the three pillars (robots, PLC, and CAD/CAM) of the modern industrial control technology"(Liao, 2007).

Arduino Opta System Structure

- The Arduino Opta Micro-Programmable Logic Controller (MPLC) provides and unique entry point into the automation field.
- The Arduino Opta, with its small size of 88.8 mm x 70mm x 56.8mm, makes it convenient to fit inside industrial control panels.
- The Arduino Opta uses an ST STM32H747XI processor.
- The STM32H747XI dual-core processor allows fast computation speeds for industrial or process control applications.
- The Opta has 2MB of flash memory and 1MB of programmable memory RAM.
- The MPLC has eight analog/digital inputs and four electromechanical relays (EMRs).
- Lastly, the power supply voltage has a range of 12-24VDC.

Continuing Education Center

Question 1

What processor is used with the Arduino Opta? a) STM32H747X1 b) STM32H747X2 c) STM32H747XI d) None of the above

PI_4

D3

..........

Arduino Opta System Structure...

ЗМ

Physical System Structure: Product View

Arduino Opta System Structure...

ltem	Feature	Item	Feature
ЗA	Power Supply Terminals 1224 VDC	3H	Ethernet Port Status LEDs
ЗB	I1I8 digital/analog input terminals (0-10V) configurable via IDE	31	Label Holder
3C	Reset Button	ЗJ	RS-485 terminal block (for Modbus RTU or proprietary communication)
3D	User Programmable button	3K	USB-C® for programming and data logging
3E	Status LEDs 14 (User Programmable)	3M	Ethernet port
3F	Relay Output Terminals 14, NO contact (SPST) 10A 250 VAC	ЗN	Port for communication and connection of auxiliary modules
3G	Functional Earth		

STM32H747XI processor Block Diagram. Image courtesy of **ST**

Arduino Opta System Structure...

Chrom-ART Accelerator™

2-Mbyte dual-bank

.......

Input-Output Wiring Structure

Input-Wiring Terminal Points

Physical terminal	Definition in core	Alias
11	AO	PIN_A0
12	Al	PIN_A1
13	A2	PIN_A2
14	A3	PIN_A3
15	A4	PIN_A4
16	A5	PIN_A5
17	A6	PIN_A6
18	Α7	PIN_A7

Question 2 In reviewing slide 13, what is the alias for physical terminal I8?

- a) PIN_A5. b) PIN_A2.
- c) PIN_A7
- d) None of the above

Input-Output Wiring Structure...

Power Supply Connection Points

Input-Output Wiring Structure...

Input-Wiring Terminal Points

Example: Electrical Wiring Diagram of DC Power Supply and Pushbutton (PB1) switch to the Arduino Opta

12-24VDC Power Supply

.......

Input-Output Wiring Structure...

Output-Wiring Terminal Points

Input-Output Wiring Structure...

Output-Wiring Terminal Points

Output	Pin	Alias
OUTPUT 1	DO	RELAY1
OUTPUT 2	D1	RELAY2
OUTPUT 3	D2	RELAY3
OUTPUT 4	D3	RELAY4

Relays are Normally Open (N.O.) devices

Input-Output Wiring Structure...

Output-Wiring Terminal Points

Electrical Wiring Diagram of DC Power Supply and DC Motor to the Arduino Opta + External Electrical _ Power Supply Load

Example:

...........

Input-Output Wiring Structure... C C C Modbus 國國國國醫 (1) finder -+ PRO ΟΡΤΑ C **User LEDs** Output 10A 00

User LEDs

Input-Output Wiring Structure...

	Opta™ User LED	Arduino Pin Mapping	
	STATUS 1	LED_D0 / LED_RELAY1	
	STATUS 2	LED_D1 / LED_RELAY2	
User LEDs	STATUS 3	LED_D2 / LED_RELAY3	
	STATUS 4	LED_D3 / LED_RELAY4	
	USER (WiFi variant only)	LED_USER / LEDB	
	RESET (Green color)	LED_BUILTIN / LEDG	
	RESET (Red color)	LEDR	

Question 3

The Arduino Pin LED_D2/LED_Relay3 is mapped to what USER LED? a) STATUS 1 b) STATUS 2 c) STATUS 3 d) STATUS 4

An Introduction to Ladder Diagram Programming Basics

A LD program enables the programmable controller to test and modify data. The data characteristics are listed below.

- a) Standardized Symbols
- b) Standardized Symbols are the programmable elements in a network.
- c) The network is arranged like a rung of a relay ladder logic diagram.
- d) The networks are bounded on the left and right by power rails.

An Introduction to Ladder Diagram Programming Basics...

• A contact is an element that imports a state to the horizontal link on its right side, equal to the Boolean function of the state of the horizontal link on its left side.

a) The right and left sides of the horizontal link are the power rail.

b) The horizontal link is the ladder diagram rung.

• A coil copies the state of the link on its left to the link on its right without modification. It stores an appropriate function of the state or transition of the left link into the associated Boolean Information Variables (IEC 61131-3, p.142, 2003).

DigiKey

An Introduction to Ladder Diagram Programming Basics...

Identification of the coil on an LD.

Illustration courtesy of IEC 6113-3 Standard, Second Edition 2003.

Lab: Hello World Ladder Diagram Program

Lab: Hello World Ladder Diagram Program

Lab Objectives:

- Participants will learn to set up communications using the Arduino PLC IDE.
- Participants will learn to create a Ladder Diagram program using the Arduino PLC IDE.
- Participants will learn to download, run, and test a basic Ladder Diagram program.

×

Lab: Hello World Ladder Diagram Program...

To create a New Project:

Go to the toolbar
 File>New object

Lab: Hello World Ladder Diagram Program...

ew	<u>P</u> roj	iect <u>O</u> n-line <u>D</u> ebug <u>T</u> o	ols <u>H</u> elp		
		<u>N</u> ew object	•	New <u>p</u> rogram	2 6
÷		Copy Object		New function <u>b</u> lock	
ച		P <u>a</u> ste object		New <u>f</u> unction	
		D <u>u</u> plicate object		New <u>v</u> ariable	
~		<u>D</u> elete object	Delete	New definition	
Þ		View PLC Object properties	Alt+Enter	1 ộ∱ ^y ộ‡° [≌] %ỹ	
Ŧŀ	⊕_]	Object <u>B</u> rowser			
	*	<u>C</u> ompile	F7		
		<u>R</u> ecompile all	Ctrl+Alt+F7		
exa		<u>Generate redistributable sour</u>	rce module		
		Import objects			
		Export objects to library			
		<u>L</u> ibrary manager			
٦P	1	<u>R</u> efresh all libraries			
⊞ ©		Select target			
		Refresh current target			
ĉ		Options			

Visual Steps To create a new program:

• Open your project tab.

•

Go to the toolbar Project>New object>New program

Continuing Education

Center

.......

32

Lab: Hello World Ladder Diagram Program...

Continuing

Education Center

Question 4

In the Resources window, the Programmable Outputs window allows defining variables or tags for Programmable Inputs.

- a) True
- b) False

Lab: Hello World Ladder Diagram Program...

Project 🔚 Resources

Lab: Hello World Ladder Diagram Program...

To create a Ladder Diagram program:

- Open your project tab.
- Go to the toolbar Project>New object>New program

Completed Ladder Diagram Program

Lab: Hello World Ladder Diagram Program...

To download a Ladder Diagram program to an Arduino Opta: • On-line.	DeviceLinkManager G	Modbus	Communication Port Baudrate	COM3 • 38400 •)- _
Setup Communication	Frotocols GDB Modbus	Active	RS-422 mode	Address 247	
Click Properties Button	Properties Description Modbus Protocol	Activate	 Modbus ASCII Jbus Enable remote co Server name 	Timeout 1000	
	OK	Cancel	Enable modem co	mmunication	

DigiKey

......

OPTA STATUS 1 2 3 4

Select the

First COM

port from

the list

OK

Cancel

...........

Lab: Hello World Ladder Diagram Program...

Lab: Hello World Ladder Diagram Program...

Arduino PLC IDE is connected to the Opta

Output						4	×
Connected to A Target runtime Target system	ArduinoOpta_1p0 d e version: 1.34.3 info: 1.0.3 Ardu	on ARMThumb2_VFP2. 2 linoOpta					^
							=
Symbols brows	er					д ,	×
Symbol name:	type here to find	symbols	Filters *	Active filters:	All		
Name			Туре		Location		
	EDI	T MODE	SOUR	се ок	CONNECTED)	

Lab: Hello World Ladder Diagram Program...

Output		ų ×
Checking compatibility between application	on binary file and run-time environmen	nt complete
Preparing for PLC application download . Downloading file C:\Users\mrdon\Document: Booting PLC application done.	. done. s∖Hello_World\Build\Hello_World.cod .	. completed.
0 warnings, 0 errors.		
Connected to ArduinoOpta_1p0 on ARMThumb	2_VFP2.	
Target runtime version: 1.34.2 Target system info: 1.0.3 ArduinoOpta		=
		~
< III		>

Completed Lab plus Extra Video Clip

https://youtu.be/ttP0NEyCFD0

Question 5

Which line of code allows for the USER Button status to be read?

- a) 1.34.2
- b) 1.34.3
- c) 1.34.4
- d) none of the above

Thank you for attending

Please consider the resources below:

Bagur, J. ,& Linares, J. C. (2023, March 11). Opta user manual. https://docs.arduino.cc/tutorials/opta/user-manual/

Finder.(n.d.). Getting started with arduino opta. https://opta.findernet.com/en/tutorial/getting-started

Liao, C.C. (2007). Programming and application of S7-200 plc (3rd ed.). Mechanical Industry Press.

Mandal. R, Maity, T., Prasad, G.M., & Verma, R. P. (2015). Automation of underground coal mines using plc. *Journal of Mines, Metals, and Fuels*, 174 – 181. <u>https://www.researchgate.net/publication/317038146_Automation_of_underground_coal_mines_using_PLC#:~:text=This%20paper%20presents%20applications%20of,flammable%20gases%20exceeds%20permissible%20limit</u>

Wilcher. D. (2024, February 21). Turn a raspberry pi into a plc using openplc. <u>https://control.com/technical-articles/turn-a-raspberry-pi-into-a-plc-using-openplc/</u>

Course_Lab_project_code.zip folder: Github Repository: Course_Lab_project_code.zip folder: Github Repository: <u>https://github.com/DWilcher/DesignNews-WebinarCode</u>

Thank You

