Continu
cec [s
Center
Leveraging Al to Accelerate Embedded Software Development
DAY 4 : Abstracting Your Hardware with an
Al-Generated HAL
Sponsored by
BENINGO [
EMBEDDED GROUP Rt S I 4 X Es @ InfoHTa SR

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [estnee
Center EMBEDDED GROUP

Webinar Logistics

* Turn on your system sound to hear the streaming presentation.

* If you have technical problems, click “Help” or submit a question
asking for assistance.

* Participate in ‘Group Chat’ by maximizing the chat widget in your
dock.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEE) [sEniNco
Center

EMBEDDED GROUP

THE SPEAKER Beningo Embedded Group - President

Focus: Embedded Software Consulting and Training

Specializes in creating and promoting embedded software excellence
in businesses around the world.

Embedded
Software

Reusable
Firmware

Development Desi

Blogs for:
JaCOb Benlngo -« DesignNews.com e EmbeddedRelated.com
e Embedded.com MLRelated.com

Jacob@beningo.com

Visit (www.beningo.com) to learn more

xXxx k 3
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

BENINGO

EMBEDDED GROUP

CEC g2

Hardware Abstraction
Layers

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [estnee
Center EMBEDDED GROUP

Hardware Abstraction Layers (HALS)

Definitions

A HAL is a layer of firmware that replaces
hardware-level accesses with higher-level
function calls.

An API is used to simplify application
programming by abstracting the application
Into black boxes.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEER [eEnineo
Center

EMBEDDED GROUP

Hardware Abstraction Layers (HALS)

A tale of two architectures

Abstraction layer(s)

Real-time Software Architecture
(Hardware Dependent)

Top-Down Approach
yoeolddy dn-wonog

-
<

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEE [eEvineo
Center

EMBEDDED GROUP

Hardware Abstraction Layers (HALS)

Modern Software Stack

Application Layer

Middleware Layer

RTOS / OS Layer
Driver Layer

Hardware

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEE [eEvineo
Center

EMBEDDED GROUP

Hardware Abstraction Layers (HALS)

Modern Software Stack with Abstractions

Application

APl Layer APl Layer OSAL

BSP Middleware Layer | RTOS / OS Layer

Hardware Abstraction Layer

Driver Layer

Hardware

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER [estnee
Center EMBEDDED GROUP

Audience POLL Question

Do you leverage hardware abstractions in your software?
a) Yes

b) No

c) Working on it

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

BENINGO

EMBEDDED GROUP

CEC g2

Generating a USART
HAL using ChatGPT

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Generating a USART HAL using ChatGPT

f USART_H
USART _H

JA We are going to write an embedded software interface in C for a usart peripheral. We are

going to use the Google C++ coding standard. Don't use built-in types such as char, but use
fixed width integer types from stdint.h. Please create an initial draft of the usart interface

{
baud_rate;
data_bits;

Analysis: o i
* | like the configuration structure for initialization.) USART Contis;
 The interface is a bit verbose and repetitive. o USHRT T (AT oty cootters

« SendByte, SendBytes, etc
* Interface support only a single USART device
* Not a fan of variables with _. Would rather use camel case
» The use of const in parameters is a good practice
« USART_Init should really have a const config ‘
« There's no considerations for interrupts or DMA through R ———
callback functions .

Note: You may get different results. I've done this exercise several times. “USART ReceiveString(uints.* butter, u butter_size);
©2023 Beningo Embedded Group, LLC. All R S Regenerateresponse

11

Education BENINGO

Center EMBEDDED GROUP

Generating a USART HAL using ChatGPT

This is a good start. Can you update the usart interface based on the following changes 1)
Can you simplify the interface so that there are not so many repetitive functions 2) The

interface only supports one device. Can you add support for multiple usart devices 3)
Instead of using _ in parameter variable names, please use camel. For example, buffer_size
would become bufferSize

Analysis:

The interface still has the string functions which | would not
include in a low-level driver. This is a library function.

The device has been added but coupled with USART_Config.
Each function does have a device pointer, but these should
be const

There are a lot of useless comments in the code

There's no considerations for interrupts or DMA through
callback functions

Note: You may get different results. I've done this exercise several times.
©2023 Beningo Embedded Group, LLC. All Rig

f USART_H
L USART _H

{
baudRate;
dataBits;
stopBits;
parity;
} USART_Config;

{
usartId;
USART _Config config;
} USART_Device;

(USART _Device* device);

(USART _Device* device,

(USART _Device* device, * pbuffer,

(USART _Device* device,

(USART _Device* device, 1 2

‘G Regenerate response

Education BENINGO

Center EMBEDDED GROUP

Generating a USART HAL using ChatGPT

) Copy code

f USART_H
USART _H

Update the latest version of the interface with the following: 1) remove the string functions
from the interface. 2) Remove the comments above each function and structure. 3)

USART _Device is not a useful structure. Remove it. 4) Update USART _Device to be an enum
of usartDevice_t that lists the available usart interfaces.

1 {

USART_1,
USART_2,

Analysis: USART

* The interface now looks slim and cleaner! o

* We have a typedef list of USARTSs to interact with.) usartbevice. t;

« Unfortunately, USART_Config comments were removed. et

« Not a big fan of USART_COUNT. | prefer datapits;
USART_DEVICE_ID_MAX. partty;

» Would prefer usartDevice_t be usartDevicelD_t.) VSART-Contia:

 There's no considerations for interrupts or DMA through (uearibevice.t dovice: USATT.Conflg confia);
callback functions (usartDovice_t dovice, « huster,

Note: You may get different results. I've done this exercise several times.
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Generating a USART HAL using ChatGPT

Ej Copy code

Update the latest interface version with the following changes: 1) change usartDevice_t to
usartDevicelD_t 2) Change USART_COUNT to USART_MAX 3) Change USART_Cong to

USART_H
USART _H

usartConfig_t 4) When passing the usartConfig_t to USART _Init, the parameter should be
const

USART_1,

. USART_2,
Analysis: o . Py
« We're zeroing in on a reasonable interface! dd mor
. USART _MAX
» Our changes have been implemented. usartDeviceId_t;
. . " - - {

What's missing?: baudRate;

. ’ dataBits;
« The functions don't return error codes stopBits;
* We are ignoring the dependency inversion rule ot
« There's no considerations for interrupts or DMA through

. (usartDeviceID_t device, usartConfig_t config);
Ca”baCk fU nCtlonS (usartDeviceID_t device, * data,

(usartDeviceID_t device,

Note: You may get different results. I've done this exercise several times.
©2023 Beningo Embedded Group, LLC. All nghts Reserved.

14

Education BENINGO

Center EMBEDDED GROUP

Generating a USART HAL using ChatGPT

f USART_H
USART _H

Update the latest interface with the following changes: 1) Each function in the interface
should return an error code of type usartError_t 2) The functions should be wrapped in a

typedef struct where each function of the interface is a function pointer. 3) Add a callback
function to the usartConfig_t structure.

USART_1,
USART_2,
USART_3,

. USART _MAX
Ana |yS I S: usartDevicelID_t;
At this point, we have a pretty well-defined interface. There are still Pt e ¢
minor changes that should be fixed by hand: USART_ERROR
. . usartError_t;
» The callback function probably would have void parameters
« The USART_Receive function pointer has a bufferSize T sauemate:
parameter which should really just be size B
* The header file is USART_H when it should be HAL_USART or et ereon
USART_INTERFACE usartConfig.t;
* The Al decided to define an extern usartinterfact variable that ypedet struct {
usartError_t (*USART_Init)(usartDeviceID_t device, usartConfig_t* cd
Can be removed. usartError_t (*USART_Send)(usartDeviceID_t device, * data,
usartError_t (*USART_Receive) (usartDeviceID_t device, * buffer,
} usartInterface_t;
Note: You may get different results. I've done this exercise several times. usartInterface.t USART Interface; 15

©2023 Beningo Embedded Group, LLC. All Rig Regenerate response

cECER [estnee
Center EMBEDDED GROUP

Audience POLL Question

How do you rate the quality of the USART HAL?
a) High quality

b) Medium quality

c) Low quality

d) Sorry, what's a HAL?

16
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Generating SPI and [2C HALs
using ChatGPT

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

17

cECER [estnee
Center EMBEDDED GROUP

Generating SPI and I2C HALs using ChatGPT

Best Practices for generating code:

1) Be very specific one what you want. The more information you feed it,
the closer it will get on the first try.

2) Use iterative feedback to get to the results you want

3) Feed in examples to more closely get the results that you want.

18
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Generating SPI and I2C HALs using ChatGPT

fndef SPI_INTERFACE_H
ne SPI_INTERFACE_H

JA Based on the usart interface design and coding style, can you create an interface for a SPI

peripheral?
Analysis:
« With an example, it generated a pretty decent Spi interface! (
« There may be a few tweaks needed, (I'd just simplify the ot oo
interface to SPI_Transfer), but it could be used as is!

- {
clockSpeed;
dataMode;
bitOrder;
(*callback) ();
spiConfig_t;

{

spiError_t (*SPI_Init)(spiDeviceID_t device, spiConfig_t* config);

spiError_t (*SPI_Transmit)(spiDeviceID_t device, * data,
spiError_t (*SPI_Receive)(spiDeviceID_t device, * pbuffer,
spiError_t (*SPI_TransmitReceive) (spiDeviceID_t device,

} spiInterface_t;

©2023 Beningo Embedded Group, LLC. All Right S Regenerate response

Education BENINGO

Center EMBEDDED GROUP

Generating SPI and I2C HALs using ChatGPT

JA based on the spi interface design and coding style, can you create an interface for a 12C

peripheral?

Analysis:

« With an example, it generated a pretty decent I2C interface!

* There may be some small adjustments needed, but once |
fed in an example, it took ~5 seconds to get the results.

©2023 Beningo Embedded Group, LLC. All Rig

f TI2C_INTERFACE_H
I2C_INTERFACE_H

I2C_1

I2C_2,

I2C_3,

I2C_MAX
i2cDeviceID_t;

im {
I2C_OK,
T2C_ERROR

i2cError_t;

- {
clockSpeed;
address;
(*callback) ();
i2cConfig_t;

{
i2cError_t (*I2C_Init)(i2cDeviceID_t device,
i2cError_t (*I2C_Write)(i2cDeviceID_t device,

i2cError_t (*I2C_Read)(i2cDeviceID_t device,

i2cError_t (*I2C_WriteRead)(i2cDeviceID_t device,

} i2cInterface_t;

#

i2cConfig_t* config);
* data,
* pbuffer, siZ
* txData,

cECER [estnee
Center EMBEDDED GROUP

Audience POLL Question

How do you view Al after this session:

a) An excellent tool to help you accelerate development
b) An interesting tool that requires more time to mature
c) A threat to your job

d) A threat to all mankind

21
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Next Steps

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

22

cECER [ssvineo
Center EMBEDDED GROUP

Additional Resources

Please consider the resources below:
« Jacob’s Al Blogs

e Jacob’'s CEC courses

+ Jacob’s ML Blogs

« Embedded Bytes Newsletter
* http://bit.ly/1IBAHYXm

Consulting g Coaching Training

23

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://www.beningo.com/category/artificial-intelligence/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/category/machine-learning/
http://bit.ly/1BAHYXm

cECER [ssvineo
Center EMBEDDED GROUP

Next Steps

0 The Rise of Al in Embedded Software

G Writing Better Prompts for Code Generation

Q Optimizing your Build System with Al

0 Abstracting your Hardware with an Al-Generated HAL

Managing Al and ML Code

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

24

Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

BENINGO

EMBEDDED GROUP

News

“rreei Q) informamarkets

