cec [ o
Center
Leveraging Al to Accelerate Embedded Software Development
DAY 3:Optimizing your Build System with Al
Sponsored by
BENINGO | i
EMBEDDED GROUP R S 32 @ ianrmamarketS

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



cECER)  [sstnee
Center EMBEDDED GROUP

Webinar Logistics

* Turn on your system sound to hear the streaming presentation.

* If you have technical problems, click “Help” or submit a question
asking for assistance.

* Participate in ‘Group Chat’ by maximizing the chat widget in your
dock.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



Continuing
‘ ‘ Education
Center

BENINGO

EMBEDDED GROUP

THE SPEAKER

!

Jacob Beningo

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Beningo Embedded Group - President
Focus: Embedded Software Consulting and Training

Specializes in creating and promoting embedded software excellence
in businesses around the world.

MicroPython
Projects

Embedded
Software

Reusable
Firmware

Development Desi

Blogs for:
« DesignNews.com « EmbeddedRelated.com
*  Embedded.com * MLRelated.com

Visit ( www.beningo.com ) to learn more
N 3




cec BB BENINGO

Center EMBEDDED GROUP

Improving your
Maketfiles

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



CECc BFEE BENINGO

Center EMBEDDED GROUP

. o ChatGPT
ImprOV]_ng Vour makeflles Your Makefile for the STM32 project looks well-structured and covers various aspects

necessary for building firmware, like application code, drivers, libraries, and tests. Here
P . .
They re fl ne I‘Ig ht? .« e e are some recommendations and observations for potential improvements:

1. Consistency in Wildcard Usage:

@ You * For "MCU_HEADERS ", you've used “$(shell find $(MCU_DIR) -type £ -name
The following makefile is being used to compile my stm32 project. Can you review and "*_h*') ", which is a bit different from the other sections where *$(wildcaxd
provide any recommendations for improvements? ...) " isused. While “£ind" is more powerful, consider consistency. If “find" is

necessary due to directory depth, it's okay, but ensure it's consistently applied
export where needed.

2. Separation of Source and Header Files:
# Define what we are building

TARGET = controller

* You've effectively separated headers and sources, which is good practice. Ensure

that this separation is maintained and clear in your documentation.
3. Use of Recursive Make:

* You're calling "$(MAKE) " recursively for “release", "debug’,and “unit_tests".
This is a common pattern, but be aware that it can lead to complexities, especially
with dependency tracking. Consider whether a non-recursive approach could be
beneficial, although it may require a more complex initial setup.

4. Dependency Management:

® You have a " -include $(wildcard $(BUILD_DIR)/*.d) " atthe end for

dependencies. Make sure that your individual build rules generate these " .d" files

appropriately for accurate dependency tracking.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.




CECc BFEE BENINGO

Center EMBEDDED GROUP

. . Chat(f‘uPT | | e
Improv1ng Vour makeflles Certainly! To address point #1, we will update the “"MCU_HEADERS " variable in your

Makefile to use the “$(wildcard ...) " pattern for consistency with the rest of your

M a ke an | m p roveme nt file. This change assumes that the directory structure of your MCU code is not too
deep, allowing "$(wildcard ...) " tocapture all the necessary header files. If your

directory structure is deeply nested, “$(wildcard ...)  might not be sufficient, and

You you may need to revert to using “£ind" or another method.
Can you provide me with an update for the makefile to fix #1?

Here's the updated section for “"MCU_HEADERS ":

makefile () Copy code

Original Code:

MCU_HEADERS := wildcard
MCU_HEADERS += wildcard

MCU_HEADERS := $(shell find $(MCU_DIR) -type f —name 'x.hx') MCU_INCLUDES := patsubst
MCU_SOURCES  := $(wildcard $(MCU_DIR)/*.cpp)

MCU_C_SOURCES := $(wildcard $(MCU_DIR)/Core/Src/*.c)

MCU_C_SOURCES $(filter-out %template.c, $(wildcard $(MCU_DIR)/Drivers/STM32L4xx_HAL_Driver/Src/*.c))
MCU_C_SOURCES $(wildcard $(MCU_DIR)/Middlewares/Third_Party/FreeRT0S/Source/*.c)

MCU_C_SOURCES $(wildcard $(MCU_DIR)/Middlewares/Third_Party/FreeRT0S/Source/CMSIS_RTOS_V2/*.c) root of the "MCU_DIR" directory, and “$(wildcard $(MCU_DIR)/**/*.h)  toinclude
MCU_C_SOURCES $(wildcard $(MCU_DIR)/Middlewares/Third_Party/FreeRT0S/Source/portable/MemMang/heap_4.c)

MCU_C_SOURCES $(wildcard $(MCU_DIR)/Middlewares/Third_Party/FreeRT0S/Source/portable/GCC/ARM_CM4F/*.c)

MCU_ASSEMBLY := $(wildcard $(MCU_DIR)/x. [sS]) nested too deeply. If your directory structure is more complex, you might need a more
MCU_INCLUDES := $(patsubst %,-I%,$(sort $(dir $(MCU_HEADERS))))

In this update, I've used "$(wildcard $(MCU_DIR)/*.h)" toinclude headersinthe

headers in all subdirectories. This approach should work well if your headers are not

robust solution.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



cECER)  [sstnee
Center EMBEDDED GROUP

Audience POLL Question

Have you asked an Al to review and improve makefiles before?
a) Yes, it was very helpful

b) Yes, it was not helpful

c) No, but | may try it

d) No, and no thanks

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



BENINGO

EMBEDDED GROUP

CEC g2

Al-Generated Docker
Container

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



CECEER  [eEvineo
Center

EMBEDDED GROUP

Al-Generated Docker Files

Dockers Container Definitions

A container is a standard unit of software that packages up
code and all its dependencies, so the application runs quickly

and reliably from one computing environment to another. AFE | PR | I | AR

1 2 3 4

A Docker container image is a lightweight, standalone,
executable package of software that includes everything
needed to run an application: code, runtime, system tools, Docker
system libraries and settings.

Infrastructure

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



CECEER  [e=nineo
Center

EMBEDDED GROUP

Al-Generated Docker Files

Docker Benefits

1. Consistent Environment: Containers provide a consistent development environment across all stages
of the embedded software lifecycle, from development to testing to deployment. This reduces the "it
works on my machine" problem.

2. lIsolation: Containers isolate the build environment from the host system, ensuring that dependencies
and configurations do not clash with the developer's environment or with other projects.

3. Dependency Control: By using containers, you can precisely control and version the dependencies and
tools required for your build, ensuring that every build uses the exact same set of tools and libraries

4. Portability: Since containers package an application with all of its dependencies, the containerized
build system can easily be moved between different machines, different ClI/CD systems, or even
different cloud providers without needing any changes.

5. CI/CD Integration: Containers integrate well with continuous integration and continuous deployment
(CI/CD) pipelines, allowing you to create reproducible builds and automate the testing and deployment
of embedded software.

10
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



Education BENINGO

Center EMBEDDED GROUP

Al-Generated Docker Files

Generate the default dockerfile

You
| want to create a dockerfile that can be used for embedded software development for
an Arm Cortex®-M4 processor. The dockerfiie will have the following requirements:
Uses the latest version of ubuntu
Installs basic linux support tools like update, clean, autoconf, curl, etc
Sets up a tool directory in /home/dev
Installs the gnu arm toolchain with C++ support for newlib
Installs clang tools for formatting and static analysis
Can you generate the dockerfile that meets the above requirements?

# Use the latest Ubuntu image as the base
FROM ubuntu:latest

# Set the working directory
WORKDIR /home/dev

# Install basic Linux support tools
RUN apt-get update && apt-get install -y \
autoconf \
curl \
clang \
clang-format \
clang-tidy \
&& rm -rf /var/lib/apt/lists/*

# Create a tools directory
RUN mkdir -p /home/dev/tools

# Set the path for the tools
ENV PATH="/home/dev/tools:${PATH}"

# Install GNU Arm toolchain with C++ support for newlib

RUN cd /home/dev/tools && \
curl -LO https://developer.arm.com/-/media/Files/downloads/gnu-rm/1
tar xjf gcc-arm-none-eabi-10-2020-qg4-major-x86_64-1linux.tar.bz2 &&
rm gcc-arm-none-eabi-10-2020-g4-major-x86_64-1linux.tar.bz2

# Add the GNU Arm toolchain to the PATH
ENV PATH="/home/dev/tools/gcc-arm-none-eabi-10-2020-g4-major/bin:${PATH

# Set the entry point to a shell
ENTRYPOINT ["/bin/bash"]

©2023 Beningo Embedded Group, LLC. All Rights Reserved.




Education BENINGO

Center EMBEDDED GROUP

Al-Generated Docker Files

Test the result

docker build -t beningo/cec-dev .

# Install GNU Arm toolchain with C++ support for newlib

>>> RUN cd /home/dev/tools && \
>>> curl -LO https://developer.arm.com/—/media/Files/downloads/gnu—-rm/10-2020-q4-major/gcc—arm—-none—eabi-10-2020-q4-major—-x86_64-1linux.tar.bz2 && \

>>> tar xjf gcc—arm—none-eabi-10-2020-g4-major-x86_64—1linux.tar.bz2 && \
rm gcc-arm-none—eabi-10-2020-q4-major-x86_64-1linux.tar.bz2

ERROR: failed to solve: process "/bin/sh —c cd /home/dev/tools && curl -LO https://developer.arm.com/—/media/Files/downloads/gnu—-rm/10-2020-q4-major/gcc—arm—none—-eabi-10-2020-
g4-major-x86_64-linux.tar.bz2 && tar xjf gcc—arm—none-eabi-10-2020-g4-major-x86_64—1linux.tar.bz2 && rm gcc—arm-none—eabi-10-2020-q4-major—-x86_64-1linux.tar.bz2" did not com

plete successfully: exit code: 2

12
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



cec BB BENINGO

Center EMBEDDED GROUP

# Use the latest Ubuntu image as the base

AI-Generated Docker Files

# Set the working directory

Give ChatGPT Feedback WORKDIR /home/dev

# Install basic Linux support tools and xz-utils for .xz file support
RUN apt-get update && apt-get install -y \
You autoconf \
i get the following error: curl \
clang \
. clang-format
dockerfile:23 g \
clang-tidy \
xz-utils \

22| # Install GNU Arm toolchain (Version 13.2.Rel1) 8& rm -rf /var/lib/apt/lists/*

23| >>> RUN cd /home/dev/tools && \

24 |>>> curl -LO https://developer.arm.com/-/media/Files/downloads/gnu-rm/13- # Create a tools directory
2023-q1-update/gcc-arm-none-eabi-13-2023-q1-update-x86_64-linux.tar.bz2 && \ RUN mkdir -p /home/dev/tools
25|>>> tar xjf gcc-arm-none-eabi-13-2023-q1-update-x86_64-linux.tar.oz2 && \
26 |>>> rm gcc-arm-none-eabi-13-2023-q1-update-x86_64-linux.tar.bz2

# Install GNU Arm toolchain (Version 13.2.Rell)
RUN cd /home/dev/tools && \
curl -LO https://developer.arm.com/-/media/Files/downloads/gnu/13.2
tar xf arm-gnu-toolchain-13.2.rell-x86_64-arm-none-eabi.tar.xz && \
ERROR: failed to solve: process "/bin/sh -c cd /home/dev/tools && curl -LO Im arm-gnu-toolchain-13.2.rell-x86_64-arm-none-eabi.tar.xz
https://developer.arm.com/-/media/Files/downloads/gnu-rm/13-2023-qgi-update/gcc-
arm-none-eabi-13-2023-qg1-update-x86_64-linux.tar.bz2 && tar xjf gcc-arm-none-
eabi-13-2023-qg1-update-x86_64-linux.tar.bz2 && rm gcc-arm-none-eabi-13-2023-
ql-update-x86_64-linux.tar.nz2" did not complete successfully: exit code: 2

# Add the GNU Arm toolchain to the PATH
# Update the PATH line below according to the actual structure of the e
ENV PATH="/home/dev/tools/arm-gnu-toolchain-13.2.rell/bin:${PATH}"

# Set the entry point to a shell
ENTRYPOINT ["/bin/bash"]

©2023 Beningo Embedded Group, LLC. All Rights Reserved.




cECER)  [sstnee
Center EMBEDDED GROUP

Audience POLL Question

Do you currently use docker to package your build environment?
a) Yes, | love it

b) Yes, | hate it

c) No, but it's an interesting idea

d) No, not really for me

14
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



BENINGO

EMBEDDED GROUP

CEC g2

Generating a Modern
Build Environment

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



Education BENINGO

Center EMBEDDED GROUP

Generating a Modern Build Environment

Define your ideal build system

Makefile

Test
Harnesses

Compiler Linker

Coverage

Makefile

Simulator /
Emulator

Compiler Linker

Coverage

Configuration Application Code
Y T Generated) [T
Makefile

I Cross . On-Target

I I Compiler Linker Execution Coverage

[ L e
} [ Push ;

| l Local . i > Cloud

I I Repositories < Pull i Repositories

e o o o e = = - o i

16
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



Education BENINGO

Center EMBEDDED GROUP

Generating a Modern Build Environment

Define Your Project Structure

|-- /standards Coding style and industry standards followed in this project.
'——cstyle.md Example coding style document in markdown
/datasheets Microcontroller and peripheral datasheets.
/design_notes Design decisions, rationale, etc.
/doxygen Doxygen generated documentation.
hd irmware Firmware code directory.
O r a u I S Ste m O u n e e O u r CO e /app Application-specific source and header files.
I |--= main.c
|-— /tasks Application tasks or threads.
*—- /config Configuration files (e.g., system_config.h).
St ru Ct u re . # Other potential application-specific folders could be added here.
° /boot # bootloader project. Application-specific source and header files.
— main.c
*—— /config # Configuration files
° S t e too to g ener ate an exam p e AT o 3508 A (e (8 A G 29 B i
/bsp Board Support Package - low-level drivers.

|-= /cfg Config files for the bsp devices

* Modify the example with your details e e i

Hardware Abstraction Layer.
Header files for HAL.
Source files for HAL.

* Feed the structure into the tool ~

/drivers Device drivers for peripherals (e.g., SPI, UART).
|-- /devices Header and source files for drivers.
Y= ey Config files for drivers.
/1lib Libraries and middleware (e.g., FreeRTOS, communication protocols).
° ° . |— /stm32 Example mcu device folder
S I d d t I t ° |— /cmsis Example Arm CMSIS supporti
‘ ' ‘ ’ |- /trace Example Percepio trace recorder library
eve ra a I I n a S u g g e S e I n S ° |-- /freertos Example FreeRTOS folder for device target
|-= /linux Example FreeRTOS folder for linux
'—— /win32 Example FreeRTOS folder for Win32
. AS k fo r fee d ba C k /utils Utilities, helpers, and service functions.
/test Unit tests, mocks, and testing scripts.
/ld Linker scripts.
L M *— linker.ld
« Make any modifications
Hardware-related files (like PCB design).
/schematics Schematic design files.
o . . o /layouts PCB layout files.
+ Continue with build system generation

/output Compiled binaries, hex files, etc.

Makefile Or CMakeLists.txt, depending on the build system.

17
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



CECc BFEE BENINGO

Center EMBEDDED GROUP

Generating a Modern Build Environment

C reate a M a kefi |e PROj_NAME = YourEmbeddedProjectName

FIRMWARE _DIR = firmware
APP_DIR = /app

You BSP_DIR = /bsp

n o o - HAL_DIR = /hal
Can you create a makefile that has a debug target to build an embedded application S — Jdrivers

with the following directory structure? LIB_DIR = /1ib
UTILS_DIR = /utils

OUTPUT_DIR = output
/YourEmbeddedProjectName LD_DIR = /1d
|-- /docs # Project documentation, datasheets, and notes. .
| |--/standards # Coding style and industry standards followed in this project. CC = arm-none-eabi-gee
| ‘'--cstylemd # Example coding style document in markdown EEEKE;F:AGS S I
| |-- /datasheets # Microcontroller and peripheral datasheets. LDFLAGS = -T /1linker.1d
| |--/design_notes # Design decisions, rationale, etc. rce fil
| '-- /doxygen # Doxygen generated documentation. APP_SRC = §(wildcard

BSP_SRC = wildcard
| HAL_SRC = $(wildcard

[-- /firmware # Firmware code directory. EﬁfiRiRin = m“iijizm
| |-- /app # Application-specific source and header files.

[ | |-- main.c

| | |--/tasks # Application tasks or threads.

'-- Jconfig  # Configuration files (e.g., system_config.h).

# Other potential application-specific folders could be added here.

OBJS = patsubst

©2023 Beningo Embedded Group, LLC. All Rights Reserved.



cECER)  [sstnee
Center EMBEDDED GROUP

Audience POLL Question

Are you going to use Al to improve how you build your code?
a) Yes, | already am

b) Yes, in the near future
c) Maybe
d) No

19
©2023 Beningo Embedded Group, LLC. All Rights Reserved.



Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Next Steps

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

20



cECER  [ssvinee
Center EMBEDDED GROUP

Additional Resources

Please consider the resources below:
« Jacob’s Al Blogs

e Jacob’'s CEC courses

+ Jacob’s ML Blogs

« Embedded Bytes Newsletter
* http://bit.ly/1IBAHYXm

Consulting | Coaching Training

21

©2023 Beningo Embedded Group, LLC. All Rights Reserved.


https://www.beningo.com/category/artificial-intelligence/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/category/machine-learning/
http://bit.ly/1BAHYXm

cECER  [ssvinee
Center EMBEDDED GROUP

Next Steps

0 The Rise of Al in Embedded Software

G Writing Better Prompts for Code Generation

a Optimizing your Build System with Al

Abstracting your Hardware with an Al-Generated HAL

Managing Al and ML Code

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

22



Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

News

reevi o Q) informamarkets



