cec [o
Center
Leveraging Al to Accelerate Embedded Software Development
DAY 2: Writing Better Prompts for Code
Generation
Sponsored by
BENINGO | i
EMBEDDED GROUP RS S L X L @ InfoHTa SR

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Webinar Logistics

* Turn on your system sound to hear the streaming presentation.

* If you have technical problems, click “Help” or submit a question
asking for assistance.

* Participate in ‘Group Chat’ by maximizing the chat widget in your
dock.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ ‘ Education
Center

BENINGO

EMBEDDED GROUP

THE SPEAKER

!

Jacob Beningo

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Beningo Embedded Group - President
Focus: Embedded Software Consulting and Training

Specializes in creating and promoting embedded software excellence
in businesses around the world.

MicroPython
Projects

Embedded
Software

Reusable
Firmware

Development Desi

Blogs for:
« DesignNews.com « EmbeddedRelated.com
* Embedded.com * MLRelated.com

Visit (www.beningo.com) to learn more
N 3

BENINGO

EMBEDDED GROUP

CEC

Writing Code with
ChatGPT

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Writing Code with ChatGPT —

collections

Be careful what you ask for. ..

. You

Write a function that calculates a running average with configurable number of values.

@ ChatGPT

Certainly! Below is an example of a Python function that calculates a running average.

The function is designed to keep track of the last “n" values (where “n" is

configurable) and computes the average of these values. It uses a deque from the

“collections ™ module to efficiently handle this functionality.

.sum -= se

self.values.append(value)

self.sum += value

self.sum / len(self.values)

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Writing Code with ChatGPT

Principles for Effective Prompts

Be specific and clear

Use Technical Language when appropriate
Provide context

Outline the desired logic or algorithm
Mention the programming language
Specify the scope

Include examples or use cases

State any constraints

Iterate and refine

LxdJouserz

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Writing Code with ChatGPT

Being more specific . . .

@) You
"~ IntheC programming language, write a function that calculates the running average of
a buffer. The buffer size is configurable, but static allocation should be used. Malloc is
not allowed.

ChatGPT

The buffer will be used to store adc values that are then used by the application. To create a C module for calculating the running average of ADC values with the

Configuration values should be stored in a separate file. Assertions should be used to specified constraints, you should structure your code across two files: a header file

verify function parameters are valid. ('RunningAverage.h) for the declaration of the module's interface and a source file

("RunningAverage.c) for the implementation. Additionally, a configuration file

Only allow functions to have a single return point. Use fixed point math, rather than

. . ("config.h) will be used to set the buffer size. The code will use fixed-point arithmetic
floating point.

and include assertions for parameter validation. The functions will be designed to have

Make the function and any supporting ones reusable and in their own separate only one return point.
module.

Provide examples on how to use the code separately.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing

Education B E N I N G o

Center EMBEDDED GROUP

Writing Code with ChatGPT

Being more specific . . .

(RunningAverage *ra, size) {
assert(size > && size <= MAX_BUFFER_SIZE);
ra->maxSize = size;
ra->currentSize =

Module Header: *RunningAverage.h" _

ra->head = H

) Copy code ra->sum = 0;
RunningAverage

f RUNNING_AVERAGE _H

e RUNNING_AVERAGE _H

Configuration File: “config.h"

(RunningAverage *ra, value) {
assert(ra != Nl && ra->maxSize > 0);

ra->head = (ra->head + 1) % ra->maxSize;

onIl .Nn . .
if (ra->currentSize < ra->maxSize) {

fndef CONFIG_H
#define CONFIG_H typedef struct { lse {

ra->currentSize++;

ne MAX_BUFFER_SIZE 100

CONETC
CONFIG_H

buffer[MAX_BUFFER_SIZE];

maxSize;

currentSize;
head;

sum;

} RunningAverage;

(RunningAverage *ra,
(RunningAverage *ra, value);

(RunningAverage *ra);

ra->sum -= ra->buffer[ra->head];
}
ra->buffer[ra->head] = value;

ra->sum += value;

(RunningAverage *ra) {
assert(ra != && ra->currentSize > 0);

average = 0;
average = ()(ra->sum / ra->currentSize);

average;

N2

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Audience POLL Question

Which of the following is critical to successfully using Al to generate code?
a) Being specific and clear

b) Providing context

c) Iterating

d) All the above

e) None of the above

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Teach it your coding
style

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

10

CECEER [e=nineo
Center

EMBEDDED GROUP

Teach it your coding style

Coding Style

Coding Styles define how your software

should look. It defines:

* Naming conventions

* Formatting

« Comments and documentation |
* File structure (int numt, Snt nun2) ¢
« Error handling e
 Memory management

0O {
* Performance optimization a=5b=3

printf(, Adder(a, b));

* etc

11
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

@A) You
Can you provide an example of a ¢ coding style guide for embedded systems that

TeaCh it Vour COding Style would help you to generate code?
Pulling the format from ChatGPT T

Certainly! Below is an example of a C coding style guide tailored for embedded

systems. This guide emphasizes practices that enhance code readability,

Potential issues with your existing el and pfermance i e crucl o ambeded s
style guide: '

* It's too big to copy in at once i Comon

* It's not in a compatible format A O o N

“is”, "can’,0or "has’.

* Constants: Use UPPER_CASE with underscores.

M ig ht CO n S i d e r th e fo | | OWi n g : * Functions: Use UpperCamelCase for function names. Function names should be

verbs and clearly describe the action performed.

(] H ave C h atG PT te I | yo u W h at it ° Macros & Preprocessor Directives: Use UPPER_CASE with underscores.

* Enumerations: Prefix enums with “e* and use UpperCamelCase for the type and

n eed S UPPER_CASE for values.
* Structures and Unions: Prefix with “s~ for structures and “u" for unions, followed by

* Feed in your examples one step at UpperCamelcase

a ti m e * Typedefs: Use UpperCamelCase and prefix with “t".

C Coding Style Guide for Embedded Systems

2. Formatting

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
Education

Center

BENINGO

EMBEDDED GROUP

Teach it your coding style

Test it!

w

=

You
Develop an example implementation for an STM32 USART driver module.

ChatGPT
Developing an example implementation of a USART driver module for an STM32
microcontroller involves several key aspects, such as configuring the USART

peripheral, implementing functions for initialization, sending and receiving data, and

handling interrupts. This implementation will be based on your coding style guide,

focusing on naming conventions, file structure, and error handling.

This example will be simplified and may not cover all the intricacies of an actual driver

implementation. It assumes the use of STM32 HAL libraries for hardware abstraction.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

13

Education BENINGO

Center EMBEDDED GROUP

File: stm32_usart_driver.h

Teach it your coding style

#ifnc STM32 _USART _DRIVER_H

Test |t| #define STM32_USART_DRIVER_H

File: stm32_usart_driver.c

(®) Copy code
eUSART_OK = O,

eUSART _ERROR_INIT,
eUSART _ERROR_TX,
eUSART _ERROR_RX

eUsartStatus (sUsartConfig* config) {
} eUsartStatus;

£ (config == LL) T rn eUSART_ERROR_INIT;

config->huart.Instance = USART1; // Example: usin

config->huart.Init.BaudRate = config->baudRate; USART _HandleTypeDef huart;

config->huart.Init.WordLength = config->wordLength; baudRate;
config->huart.Init.StopBits = config->stopBits; wordLength;
config->huart.Init.Parity = config->parity; stopBits;
config->huart.Init.Mode = config->mode; parity;
config->huart.Init.HwFlowCtl = config->hwFlowCtl;

config->huart.Init.OverSampling = UART_OVERSAMPLING_16;

mode;
hwFlowCtl;
} sUsartConfig;

. . =
(HAL_UART_Init(&(config->huart)) != HAL_OK) { eUsartStatus (sUsartConfig* config);

eUSART _ERROR_INIT; eUsartStatus (USART _HandleTypeDef* huart,
eUsartStatus (USART _HandleTypeDef* huart,

eUSART _OK;;

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Education BENINGO

Center EMBEDDED GROUP

Teach it your coding style

Test it!

eUsartStatus (USART _HandleTypeDef* huart, * pData,
f (huart == NULL || pData == NULL) return eUSART_ERROR_TX;

f (HAL_UART _Transmit(huart, pData, Size,) !'= HAL_OK) {
rn eUSART_ERROR_TX;

1 eUSART _OK;

eUsartStatus (USART _HandleTypeDef* huart, * pData,
if (huart == NULL || pData == NULL) return eUSART_ERROR_RX;

if (HAL_UART_Receive(huart, pData, Size,) !'= HAL_OK) {
eUSART_ERROR_RX;

. eUSART_OK;

15
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Audience POLL Question

How well do you feel that the Al followed our coding style?
a) Surprising well

b) Well, but there is room for improvement

c) Not well

d) The worst. Where are the interns?

16
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Prompt Examples

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

17

Education BENINGO

Center EMBEDDED GROUP

Prompt Examples

Temperature Sensor Interface

BUFFER_SIZE 12
READ _INTERVAL 300000

You temperatureBuffer[BUFFER_SIZE];

Develop firmware for an STM32 microcontroller to interface with a DS18B20 butferIndex = 0;

temperature sensor. The firmware should initiate temperature readings every 5
minutes, store the readings in an internal buffer, and transmit the data via UART to a
connected computer. Include error handling for sensor disconnection and implement a
low-power sleep mode between readings.

@© chatGpT);
Developing firmware for an STM32 microcontroller to interface with a DS18B20 * buffer,

temperature sensor and meet your specified requirements involves several steps. This ()3
example will provide a basic framework, following your coding style guide, for these

functionalities: () {

HAL _Tnit();
SystemClock_Config();
USART2_Init();

. Sensor Initialization and Reading: Interface with the DS18B20 sensor to initiate and
read temperatures.

. Timing Control: Use a timer to trigger temperature readings every 5 minutes.

. Buffer Management: Store readings in an internal buffer. Timer_Init();

. UART Communication: Transmit the buffered data to a connected computer. DS18B20_Init();

. Error Handling: Implement checks for sensor disconnection and error conditions.

. Low-Power Management: Enter a low-power sleep mode between readings. lastReadTime =

Note: This is a high-level description. The actual implementation will depend on the

specifics of your STM32 microcontroller and development environment.

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Prompt Examples
lteration #2

19
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

CECEER [eEvineo
Center

EMBEDDED GROUP

[teration is the key
Not perfect . ..

{
eUSART_OK =
eUSART _ERROR_INIT,

eUSART_ERROR_TX,
eUSART_ERROR_RX
} eUsartStatus;

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

cECER) [sstnee
Center EMBEDDED GROUP

Audience POLL Question

What do you think Al is more likely to do?
a) Take your job

b) Act as a tool to make you more efficient
c) Teach you to communicate more clearly
d) Improve how you develop requirements

21
©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Continuing
‘ E‘ Education
Center

BENINGO

EMBEDDED GROUP

Next Steps

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

22

cECER [ssvinee
Center EMBEDDED GROUP

Additional Resources

Please consider the resources below:
« Jacob’s Al Blogs

e Jacob’'s CEC courses

+ Jacob’s ML Blogs

« Embedded Bytes Newsletter
* http://bit.ly/1IBAHYXm

23

www.beningo.com

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

https://www.beningo.com/category/artificial-intelligence/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/category/machine-learning/
http://bit.ly/1BAHYXm

cECER [ssvinee
Center EMBEDDED GROUP

Next Steps

0 The Rise of Al in Embedded Software

G Writing Better Prompts for Code Generation

Optimizing your Build System with Al

Abstracting your Hardware with an Al-Generated HAL

Managing Al and ML Code

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

24

Continuing
‘ E‘ Education
Center

Thank You

Sponsored by

News

reevi o Q) informamarkets

