

Raspberry Pi 5 Automation Lecture Series

Day 2: Attaching Sensors to the Raspberry Pi 5

Sponsored by

11111111 .

DigiKey

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

DigiKey

Fred Eady

Visit 'Lecturer Profile' in your console for more details.

AGENDA

- Install a 16-Bit Raspberry Pi 5 Analog-to-Digital Interface
- Code a Raspberry Pi 5 TCP/IP Client Sensor Node
- Construct a Pico W TCP/IP Server Sensor Node
- Construct an Upgraded Electromagnetic Sensor Interface

Continuing

Education

Center

DigiKey

Wire Up the ADC Hardware

5

Raspberry Pi 5 Automation Lecture Series Attaching Sensors to the Raspberry Pi 5 Install a 16-Bit Raspberry Pi 5 Analog-to-Digital Interface

Wire Up the ADC Hardware

DigiKey

Raspberry Pi 5 Automation Lecture Series Attaching Sensors to the Raspberry Pi 5 Code a Raspberry Pi 5 TCP/IP Client Sensor Node

Contact and Setup the ADS1115


```
int main(int argc, char *argv[])
{
  int h;
  int err;
  ads1x15_p adc=NULL;
  double end_time;
  adc = ADS1115 open(0, 1, 0x48, 0);
```



```
printf("ADS1115 is active!!\r\n");
if (adc == NULL)
{
    printf("ERROR: ADS1115 failed to open..\r\n");
    return -2;
}
ADS1X15_set_channel(adc, ADS1X15_A0);
ADS1X15_set_voltage_range(adc, 3.3);
ADS1X15_set_sample_rate(adc, 0); // set minimum sampling rate
ADS1X15_alert_when_high_or_low(adc, 3, 1); // alert outside these voltages
```


Raspberry Pi 5 Automation Lecture Series Attaching Sensors to the Raspberry Pi 5 Code a Raspberry Pi 5 TCP/IP Client Sensor Node

Setup the GPIO ALERT Mechanism

```
// open the GPIO for alerts
err = lgGpioClaimAlert(h, 0, LG_BOTH_EDGES, alertPin, -1);
if (err < 0) return -4;
lgGpioSetAlertsFunc(h, alertPin, alert_cbf, adc);
}</pre>
```


Raspberry Pi 5 Automation Lecture Series Attaching Sensors to the Raspberry Pi 5 Code a Raspberry Pi 5 TCP/IP Client Sensor Node

Create the Client Socket

void alert_cbf(int e, lgGpioAlert_p evt, void *userdata)
{
 int socket_adc;
 struct sockaddr_in server;
 char alertMsg[32];
 int adcRaw;

```
ads1x15_p adc = userdata;
```

```
alertMsg[0] = 'A';
alertMsg[1] = 'L';
alertMsg[2] = 'E';
alertMsg[3] = 'R';
alertMsg[4] = 'T';
alertMsg[5] = ':';
//Create socket
socket_adc = socket(AF_INET, SOCK_STREAM, 0);
if (socket_adc == -1) printf("Could not create socket");
```


Connect to the Server and Send the ALERT Packet

```
server.sin addr.s addr = inet addr("192.168.1.129");
server.sin family = AF INET;
server.sin port = htons( 8088 );
//Connect to remote server
if (connect(socket_adc , (struct sockaddr *)&server , sizeof(server)) < 0){</pre>
puts("connect error");
return:
}
adcRaw = ADS1X15 read(adc);
alertMsg[6] = (adcRaw & 0xFF00) >> 8;
alertMsg[7] = adcRaw & 0x00FF;
alertMsg[8] = '\r';
if( send(socket adc , alertMsg , strlen(alertMsg) , 0) < 0){
puts("Send failed");
return;
}
close(socket adc);
}
```


PICO W TCP/IP Server Hardware

DigiKey

PICO W TCP/IP Server Hardware

DigiKey

PICO W TCP/IP Server Hardware

DigiKey

Listen and Connect to the Raspberry Pi 5 Client

```
static int handle_alert(int conn_sock)
```

```
char buffer[16];
char bufalert[16];
int done = 0;
int i;
int indx,position,len;
memset(buffer,0x00,sizeof(buffer));
memset(bufalert,0x00,sizeof(bufalert));
```

```
while (done < sizeof(buffer))
{
    int done_now = recv(conn_sock, buffer + done, sizeof(buffer) - done, 0);
    if (done_now <= 0)
        return -1;
    done += done_now;
    char *end = strnstr(buffer, "\r", done);
    if (!end)
        continue;
    *end = 0:
    *end = 0:
```


Parse the ALERT Packet


```
indx = 0;
position = 1;
len = 6; // Length of "ALERT:"
while(indx < len)</pre>
 bufalert[indx] = buffer[position + indx -1];
 indx++;
 if (!strcmp(bufalert, "ALERT:"))
       cyw43_arch_gpio_put(0, true);
       printf("The LED is now on\r\n");
 else
       printf("no match\r\n");
 break;
```


DigiKey

Start the Raspberry Pi 5 TCP/IP Client Sensor Node

F				Р	i5user@	pi5a: ^	~/pi5_a	ipps			Q =		•	۰	×
File Edit	View	Search	Terminal	Help											
<mark>fred@shop</mark> Linux pi5	-ubunt a 6.1.	u:~\$ ss 0-rpi7∙	sh pi5use •rpi-2712	er@pi5a #1 SMP	PREEM	1PT De	ebian	1:6.1	.63-1+	+rpt1	(2023-	11-2	24) a	aarch	164
The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.															
Debian GN permitted Last logi pi5user@p pi5user@p	U/Linu by app n: Wed i5a:~ i5a:~/	x comes plicabl Jan 31 \$ cd pi pi5_app	with AB le law. l 17:07:3 l5_apps os \$./ad	SOLUTEL 9 2024 IS1115	Y NO W from 1	IARRAN	NTY, t	to the	exter	nt					

Receive and Process an ALERT Packet

DigiKey

Improved Electromagnetic Sensor Interface

DigiKey

Improved Electromagnetic Sensor Interface

DigiKey

Electromagnetic Sensor System View

Setup Raspberry Pi 5 GPIO

DigiKey

int h,i; uint8_t level25; uint8_t level26;

int main(void)
{
 h = lgGpiochipOpen(4);
 lgGpioClaimOutput(h,0,23,0);
 lgGpioClaimOutput(h,0,24,0);
 lgGpioClaimInput(h,0,25);
 lgGpioClaimInput(h,0,26);

Metal Detected on GPIO 26

DigiKey

Next Time...

DigiKey

MORE TO COME..

Thank you for attending!!!

Please consider the resources below:

- Today's Download Package
- raspberrypi.org Raspberry Pi 5
- raspberrypi.org PICO W
- LJ12A3-4-Z/BX Datasheet

Thank You

SALANA.

