

DesignNews

Understanding Industrial Controls with an ESP32

Day 5: OpenPLC and ESP32 Industrial Controls-Part 2

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

Agenda:

- Timers (TON/TOF/TP) Instructions
- Counters (CTU/CTD) Instructions
- OpenPLC Counters and Timers Hands-ON Activities
- Lab: Build An ESP32 OpenPLC Conveyor Simulator

DT

eu

Research Perspective

"Programmable logic controllers (PLCs) provide an ecosystem of relatively simple software logic, robust and ruggedized hardware, networks with controllable real-time behaviors, and extensive availability of interoperable components such as sensors and actuators" (Sehr et al., 2021).

Course Question Can an ESP32 microcontroller contribute to the Industrial Controls field?

Timers (TON/TOFF/TP)

- Timers are important devices used in industrial control systems.
- There are three types of timers used in industrial control systems:
 - a) Analog or mechanical timers.
 - b) Digital or solid-state timers.
 - c) PLC timers.

Timers (TON/TOFF/TP)...

Examples of Timers

Digital or Solid-State Timer

PLC Timer (OpenPLC)

Question 1

What are the three types of timers used in industrial systems?

- a) analog/mechanical, digital/solid-state, LR timer
- b) analog/mechanical, digital/solid-state, PLC timers
- c) analog/mechanical, digital/solid-state, RC timers
- d) none of the above

Timers (TON/TOFF/TP)...

- Analog or mechanical timers are used in older relay logi control systems.
- Connecting a resistor in series with a capacitor creates a basic RC–time constant circuit.
- Wiring this circuit to a transistor relay circuit can create a solid-state timer.
- Adding a n-bit counter to the RC-based transistor relay circuit allows for creating a Digital Electronic Timer.

Timers (TON/TOFF/TP)...

PLC Timers - (OpenPLC)

- Timer-ON Delay (TON) Timer: Counts time-based intervals when the instruction is true.
- Timer-OFF (TOF) Timer: Counts time-based intervals when the instruction of false.
- Pulse Timer (TP): Counts short time-based intervals when the instruction is true.

Timers (TON/TOFF/TP)...

Note: The Timers are Function Blocks (FBs).

Counters (CTU/CTD)

- Programmed counters serve the same function as mechanical timers-to receive external count events.
- When a trigger event is applied to the programmed counter, the count increments (Count-Up) or decrements (Count-Down).
- Although the majority of counters used in industrial controls are up-counters, down-counters are used in numerous control and material handling systems. applications. Example: Parts shelf inventory tracking.

Note: The Up and Down counters are Function Blocks (FBs).

EL

Counters (CTU/CTD)...

A Digital 4 Bit Binary Counter

2

Jotrin (2024)

Question 2

What function is provided by a programmed counter?

- a) same function as mechanical timers to receive external count events
- b) same as RC counters to receive external count events
- c) same as digital clocks to receive external count events
- d) none of the above

Continuing Education

OpenPLC Counters and Timers Hands-ON Activities

The hands-on activities will demonstrate the basics of OpenPLC Counters and Timers. The OpenPLC files are located in the Design News webinar code zipped folder.

OpenPLC Counters and Timers Hands-ON Activities...

Basic Timer ON Control

#	Name	Class	Туре	Location	Initial Value	Option	Documentation
1	X100	Local	BOOL	%IX0.1			PB_Switch1 (GPIO18: ESP32)
2	Y100	Local	BOOL	%QX0.0			LED (GPIO2: ESP32)
3	TON0	Local	TON				Timer_ON Delay

In reviewing slide 20, which tag is associated with the ESP32 GPIO pin 18?

- a) X100
- b) Y100
- c) TON0
- d) none of the above

OpenPLC Counters and Timers Hands-ON Activities...

Basic Timer OFF Control

#	Name	Class	Туре	Location	Initial Value	Option	Documentation
1	X100	Local	BOOL	%IX0.1			PB1_Switch1 (GPIO18: ESP32)
2	Y101	Local	BOOL	%QX0.0			LED (GPIO2: ESP32)
3	TOF0	Local	TOF				
4	VarValue	Local	TIME				

OpenPLC Counters and Timers Hands-ON Activities...

Basic Up Counter Control

	Name	Class	Туре	Location	Initial Value	Option	Documentation	
1	Count_UP	Local	BOOL	%IX0.1			PB_Switch1 (GPIO18: ESP32)	
2	Reset	Local	BOOL	%IX0.2			PB_Switch2 (GPIO19: ESP32)	
3	Count_Complete	Local	BOOL	%QX0.0			LED (GPIO2: ESP32)	
4	СТОО	Local	CTU					
5	Preset_Value	Local	INT					
		C.	ount_UP		100 TU	Count_Co	times will tur LED and the	n on the 7-Segment

OpenPLC Counters and Timers Hands-ON Activities...

Basic Down Counter Control

#	Name	Class	Type	Location	Initial Value	Option	Documentation
1	Count_Down	Local	BOOL	%IX0.1			PB_Switch1 (GPIO18: ESP32)
2	Load_Value	Local	BOOL	%IX0.2			PB_Switch2 (GPIO19: ESP32)
3	Count_Complete	Local	BOOL	%QX0.0			LED (GPIO2: ESP32)
4	Done_Bit	Local	BOOL				
5	CTD0	Local	CTD				
6	Preset_Value	Local	INT				
7	Count Value	Local	INT				

Pressing PB_Switch2 will load the Down Counter with a Preset value of ten. The LED and 7-Segment LED Display will turn on. Pressing PB_Switch1 10 times will turn off the LED and the 7-Segment LED Display.

Lab: Build An ESP32 OpenPLC Conveyor Simulator

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Participant Learning Objectives:

- Participants will learn a practical application for a Down Counter Function Block in implementing a PLC Industrial Controls concept with an ESP32 microcontroller.
- Participants will learn to open an LD file and run a preprogrammed OpenPLC conveyor simulator application.
- Participants will learn to change the count value for the OpenPLC Conveyor Simulator application.

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Conveyor Simulator Concept

Conveyor Sequence of Operation:

- 1. Operator 1 Loads Preset Count Value.
- 2. The Control Panel turns ON the Visual Indicators.
- 3. The Control Panel turns ON the Conveyor Motor.
- 4. The Conveyor transports the part to Operator 2.
- 5. The Retro-Reflective Sensor detects the part on the Conveyor.
- 6. The Control Panel counter is decremented by 1.
- 7. When the parts counter equals 0, then the Conveyor Motor stops.
- 8. The Visual Indicators turn OFF.

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Concept Diagram:

Question 4

For the Conveyor Simulator Concept, what sensor detects the part?

- a) Photocell
- b) Proximity
- c) Hall-Effect
- d) Retro-Reflective

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Partial ESP32 Micro Trainer Electronic Circuit Schematic Diagram

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

ESP32 Micro Trainer Transistor Motor Electronic Circuit Schematic Diagram

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Conveyor Simulator LD

34

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

The ESP32 I/O Pin Configuration

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Transfer Conveyor Simulator LD to the ESP32 microcontroller

		Transfer Program to F	AC	×
		Board Type	ESP32 Generic [3.0.7]	
		COM Port	Silicon Labs CP210x USB to UART Bridge (COM3) (COM3)	υ
Click here to transfer the LD	\sim	5	This setting will allow you to change the default pin mapping for your board. Please be cautious while edditing, as mistakes can lead to compilation errors. Pin numbers should obey the Arduino notation for your board and must be comma-separated.	
program to the	47		Digital Inputs	
FSP32		Transfer	17, 18, 19, 21, 22, 23, 27, 32, 33	_
			Digital Outputs	
microcontroller.			02, 04, 05, 12, 13, 14, 15, 16	
			Analog Inputs	
			34, 35, 36, 39	
		I/O Config	Analog Outputs	
			25, 26	
		Communications		
			Restore Defaults Save Changes	

35

Lab: Build An ESP32 OpenPLC Conveyor Simulator...

Press the SW2 pushbutton switch to load the preset count value (10). The LED, the 7-Segment LED display (letter H), and the DC motor will turn ON. Press the SW1 pushbutton switch 10 times, the visual indicators and the DC motor will turn OFF.

Functional ESP32 OpenPLC Conveyor Simulator

Watch the Video Clip!

https://www.youtube.com/watch ?v=f5QQeMH169w

In reviewing slide 30, which switch simulates the Retro-Reflective sensor?

- a) SW1
- b) SW2
- c) SW3
- d) none of the above

eu

Thank you for attending

Please consider the resources below:

- Jotrin. (2024.). *4 bit binary counter: Working, circuit diagrams & applications.* <u>https://www.jotrin.ru/technology/details/4-bit-binary-counter</u>
- Sehr, M.A, Lohstroh, M., Weber, M., Ugaide, I., Witte, M., Neidig, J., Hoeme, S., Niknami, M., & Lee, E.A. (2021). Programmable logic controllers in the context of industry 4.0. *IEEE Transactions On Industrial Informatics* 17(5), 3523 – 3535. <u>https://ieeexplore.ieee.org/document/9134804</u>
- Wilcher, D. (1983). Electronic timer: A few simple circuit chips and their use provide a basic primer in timers. Radio-Electronics Annual. <u>https://github.com/DWilcher/DesignNews-</u> <u>WebinarCode/blob/main/December_24_Webinar_Code.zip</u>
- Wilcher, D. (2024). Understanding industrial controls with an esp32. GitHub. https://github.com/DWilcher/DesignNews-WebinarCode/blob/main/December_24_Webinar_Code.zip

DesignNews

Thank You

Sponsored by

