
By Informa Markets

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Introduction to Build Systems and CMake

Sponsored by

DAY 3 : CMake for Embedded Systems

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question

asking for assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your

dock.

2

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Review:
The Problem

3

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

The Problem

There are several problems that teams are facing:

• Managing multiple build configurations

• Slow builds

• Software quality issues

• Inability to use modern techniques like DevOps, Simulation, TDD, etc,

effectively

• Productivity issues (time to market, product quality)

4

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

The Solution

A carefully designed CMake build system will:

• Simplify build configurations with better dependency management

• Allow for faster, cross-platform builds

• Enable consistency across different development environments

• Unlock modern development processes and tools like DevOps,

Simulation, and TDD

• Increase productivity

5

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.
6

THE SPEAKER

Jacob Beningo
Jacob@beningo.com

Jacob@beningo.com

Visit to learn more
www.beningo.com

www.beningo.com

Blogs for:

• DesignNews.com

• Embedded.com

• EmbeddedRelated.com

• MLRelated.com

Beningo Embedded Group – CEO / Founder

Focus: Embedded Software Consulting and Training

Help teams deliver higher-quality embedded software faster. We specialize in creating
and promoting embedded software excellence in businesses around the world.

https://www.beningo.com/about/
http://www.beningo.com/

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

The Plan

7

Step 1

Learn the Technology

Step 2

Design the Solution

Step 3

Adopt Modern Practices

Transform Your Build Process: Streamline, Modernize, and Boost Productivity with CMake

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Toolchain Files

8

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Toolchain Files - Introduction

A CMake toolchain file is a script used by CMake to define the compilation

environment, particularly for cross-compilation scenarios. It allows you to

• specify the compiler

• linker,

• and various other tools and flags

that CMake should use when generating build files. Toolchain files are

essential when you are building software for a different platform than the

one you are working on, such as when targeting an embedded system from

a desktop environment.
9

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Toolchain Files – The Structure

A typical CMake toolchain file is a

plain text file with the .cmake

extension, and it contains a series

of commands that configure the

necessary tools and flags

10

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Toolchain Files - Compilation

11

cmake -DCMAKE_TOOLCHAIN_FILE=$TOOLCHAIN_FILE -G Ninja -B $BUILD_DIR -S . -DCMAKE_BUILD_TYPE=$BUILD_TYPE
ninja -C $BUILD_DIR

Must specify in our command!

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Audience POLL Question

12

What is a toolchain file used for?
a) To manage source code versioning in a project
b) To define the compilation environment, particularly for cross-compiling

to a different platform
c) To automate the testing of code during the build process
d) To configure the user interface settings in a development environment

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Host Toolchains

13

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Host Toolchain Files – What are they for?

A Host Toolchain file is a configuration file that defines the tools, compilers,

and libraries used when building software on the host machine (the

machine where the build is happening).

It sets up the environment to ensure consistent builds across different

machines by specifying which compiler, linker, and other tools should be

used.

14

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Host Toolchain Files – Why do we need them?

• Embedded projects often require specific versions

of compilers, linkers, and other tools that might

not be the default on every developer’s machine.

A host toolchain file ensures these requirements

are met consistently.

• For Example: Compiling an RTOS

15

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Host Toolchain Files – Threading Example

16

Set the system name (e.g., ARM Cortex-M)
set(CMAKE_SYSTEM_NAME Generic)
set(CMAKE_SYSTEM_PROCESSOR arm)

Set the cross compiler
set(CMAKE_C_COMPILER arm-none-eabi-gcc)
set(CMAKE_CXX_COMPILER arm-none-eabi-g++)

Specify the path to FreeRTOS source
set(FREERTOS_PATH /path/to/freertos/source)

Add compiler flags specific to the embedded platform
set(CMAKE_C_FLAGS "-mcpu=cortex-m4 -mthumb -O2 -
ffreestanding -fno-builtin")
set(CMAKE_CXX_FLAGS "-mcpu=cortex-m4 -mthumb -O2 -
ffreestanding -fno-builtin")

Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

Set the system name (Linux)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR x86_64)

Set the compiler to GCC
set(CMAKE_C_COMPILER /usr/bin/gcc)
set(CMAKE_CXX_COMPILER /usr/bin/g++)

Specify the path to FreeRTOS source for Linux
set(FREERTOS_PATH /path/to/freertos/source)

Add necessary flags for building on Linux
set(CMAKE_C_FLAGS "-O2 -Wall")
set(CMAKE_CXX_FLAGS "-O2 -Wall")

Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

Link with the pthread library (often required for RTOS-like
behavior on Linux)
set(CMAKE_EXE_LINKER_FLAGS "-lpthread")

Set the system name (Windows)
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR x86_64)

Set the compiler to MinGW GCC
set(CMAKE_C_COMPILER C:/mingw/bin/gcc.exe)
set(CMAKE_CXX_COMPILER C:/mingw/bin/g++.exe)

Specify the path to FreeRTOS source for Windows
set(FREERTOS_PATH C:/path/to/freertos/source)

Add necessary flags for building on Windows
set(CMAKE_C_FLAGS "-O2 -Wall")
set(CMAKE_CXX_FLAGS "-O2 -Wall")

Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

Link with the Windows threading library (if needed)
set(CMAKE_EXE_LINKER_FLAGS "-lwinpthread")

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Audience POLL Question

17

What is the most important reason to use a host toolchain file in
embedded software development?
a) To ensure consistent build environments across different development

machines
b) To simplify cross-compilation for multiple target platforms
c) To automate the inclusion of third-party libraries and dependencies
d) To optimize build times by using custom compiler and linker settings

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files

18

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – What are they for?

A Target Toolchain file is a configuration file that defines the tools,

compilers, and libraries used when cross-compiling software on a host

machine (the machine where the build is happening) for a different target.

It sets up the environment to ensure consistent build for the target

architecture.

19

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – An Example

20

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – An Example

21

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – An Example

22

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – An Example

23

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Target Toolchain Files – An Example

24

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Audience POLL Question

25

Why do you use a target toolchain file when developing embedded
software?
a) To define the specific cross-compiler and linker required for the target

hardware
b) To configure hardware-specific optimization flags for better

performance
c) To manage dependencies and libraries that are specific to the target

environment
d) To ensure compatibility with the target operating system or RTOS

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Next Steps

26

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Embedded Build System

Transform your build system with the free
Beningo Embedded Build System example:

- Docker container build system

- Makefile-based

- CMake with Ninja Example

- Compilation scripts

- Integrated tools like cpputest

27

https://mailchi.mp/beningo/beningo-devops

https://mailchi.mp/beningo/beningo-devops

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Additional Resources

28

Please consider the resources below:
• Jacob’s Blogs
• Jacob’s CEC courses
• Embedded Software Academy

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

Consulting Coaching Training

www.beningo.com
www.beningo.com

https://www.beningo.com/blog/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/embedded-software-academy/
http://bit.ly/1BAHYXm
https://www.beningo.com/about/
https://www.linkedin.com/in/jacobbeningo/

Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Next Steps

29

Introduction to Embedded Build Systems

CMake Fundamentals

CMake for Embedded Systems

Designing your Build System

Adopting Modern Practices

Thank You

Sponsored by

	Slide 1: Introduction to Build Systems and CMake
	Slide 2: Webinar Logistics
	Slide 3
	Slide 4: The Problem
	Slide 5: The Solution
	Slide 6
	Slide 7: The Plan
	Slide 8
	Slide 9: Toolchain Files - Introduction
	Slide 10: Toolchain Files – The Structure
	Slide 11: Toolchain Files - Compilation
	Slide 12: Audience POLL Question
	Slide 13
	Slide 14: Host Toolchain Files – What are they for?
	Slide 15: Host Toolchain Files – Why do we need them?
	Slide 16: Host Toolchain Files – Threading Example
	Slide 17: Audience POLL Question
	Slide 18
	Slide 19: Target Toolchain Files – What are they for?
	Slide 20: Target Toolchain Files – An Example
	Slide 21: Target Toolchain Files – An Example
	Slide 22: Target Toolchain Files – An Example
	Slide 23: Target Toolchain Files – An Example
	Slide 24: Target Toolchain Files – An Example
	Slide 25: Audience POLL Question
	Slide 26
	Slide 27: Embedded Build System
	Slide 28: Additional Resources
	Slide 29: Next Steps
	Slide 30: Thank You

