
By Informa Markets

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Introduction to Build Systems and CMake

Sponsored by

DAY 3 : CMake for Embedded Systems



Sponsored By

©2023 Beningo Embedded Group, LLC. All Rights Reserved.

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question 

asking for assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your 

dock.
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Review:
The Problem
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The Problem

There are several problems that teams are facing:

• Managing multiple build configurations

• Slow builds

• Software quality issues

• Inability to use modern techniques like DevOps, Simulation, TDD, etc, 

effectively

• Productivity issues (time to market, product quality)
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The Solution

A carefully designed CMake build system will:

• Simplify build configurations with better dependency management

• Allow for faster, cross-platform builds

• Enable consistency across different development environments

• Unlock modern development processes and tools like DevOps, 

Simulation, and TDD

• Increase productivity
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THE SPEAKER

Jacob Beningo
Jacob@beningo.com

Jacob@beningo.com

Visit to learn more
www.beningo.com

www.beningo.com

Blogs for:

• DesignNews.com

• Embedded.com

• EmbeddedRelated.com

• MLRelated.com

Beningo Embedded Group – CEO / Founder

Focus: Embedded Software Consulting and Training

Help teams deliver higher-quality embedded software faster. We specialize in creating 
and promoting embedded software excellence in businesses around the world.

https://www.beningo.com/about/
http://www.beningo.com/
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The Plan
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Step 1

Learn the Technology

Step 2

Design the Solution

Step 3

Adopt Modern Practices

Transform Your Build Process: Streamline, Modernize, and Boost Productivity with CMake
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Toolchain Files
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Toolchain Files - Introduction

A CMake toolchain file is a script used by CMake to define the compilation 

environment, particularly for cross-compilation scenarios. It allows you to

•  specify the compiler

• linker, 

• and various other tools and flags 

that CMake should use when generating build files. Toolchain files are 

essential when you are building software for a different platform than the 

one you are working on, such as when targeting an embedded system from 

a desktop environment.
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Toolchain Files – The Structure

A typical CMake toolchain file is a 

plain text file with the .cmake 

extension, and it contains a series 

of commands that configure the 

necessary tools and flags
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Toolchain Files - Compilation
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cmake -DCMAKE_TOOLCHAIN_FILE=$TOOLCHAIN_FILE -G Ninja -B $BUILD_DIR -S . -DCMAKE_BUILD_TYPE=$BUILD_TYPE 
ninja -C $BUILD_DIR

Must specify in our command!
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Audience POLL Question
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What is a toolchain file used for?
a) To manage source code versioning in a project
b) To define the compilation environment, particularly for cross-compiling 

to a different platform
c) To automate the testing of code during the build process
d) To configure the user interface settings in a development environment
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Host Toolchains
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Host Toolchain Files – What are they for?

A Host Toolchain file is a configuration file that defines the tools, compilers, 

and libraries used when building software on the host machine (the 

machine where the build is happening).

It sets up the environment to ensure consistent builds across different 

machines by specifying which compiler, linker, and other tools should be 

used.
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Host Toolchain Files – Why do we need them? 

• Embedded projects often require specific versions 

of compilers, linkers, and other tools that might 

not be the default on every developer’s machine. 

A host toolchain file ensures these requirements 

are met consistently.

• For Example: Compiling an RTOS

15
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Host Toolchain Files – Threading Example
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# Set the system name (e.g., ARM Cortex-M)
set(CMAKE_SYSTEM_NAME Generic)
set(CMAKE_SYSTEM_PROCESSOR arm)

# Set the cross compiler
set(CMAKE_C_COMPILER arm-none-eabi-gcc)
set(CMAKE_CXX_COMPILER arm-none-eabi-g++)

# Specify the path to FreeRTOS source
set(FREERTOS_PATH /path/to/freertos/source)

# Add compiler flags specific to the embedded platform
set(CMAKE_C_FLAGS "-mcpu=cortex-m4 -mthumb -O2 -
ffreestanding -fno-builtin")
set(CMAKE_CXX_FLAGS "-mcpu=cortex-m4 -mthumb -O2 -
ffreestanding -fno-builtin")

# Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

# Set the system name (Linux)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR x86_64)

# Set the compiler to GCC
set(CMAKE_C_COMPILER /usr/bin/gcc)
set(CMAKE_CXX_COMPILER /usr/bin/g++)

# Specify the path to FreeRTOS source for Linux
set(FREERTOS_PATH /path/to/freertos/source)

# Add necessary flags for building on Linux
set(CMAKE_C_FLAGS "-O2 -Wall")
set(CMAKE_CXX_FLAGS "-O2 -Wall")

# Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

# Link with the pthread library (often required for RTOS-like 
behavior on Linux)
set(CMAKE_EXE_LINKER_FLAGS "-lpthread")

# Set the system name (Windows)
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR x86_64)

# Set the compiler to MinGW GCC
set(CMAKE_C_COMPILER C:/mingw/bin/gcc.exe)
set(CMAKE_CXX_COMPILER C:/mingw/bin/g++.exe)

# Specify the path to FreeRTOS source for Windows
set(FREERTOS_PATH C:/path/to/freertos/source)

# Add necessary flags for building on Windows
set(CMAKE_C_FLAGS "-O2 -Wall")
set(CMAKE_CXX_FLAGS "-O2 -Wall")

# Include FreeRTOS in the build
include_directories(${FREERTOS_PATH}/include)

# Link with the Windows threading library (if needed)
set(CMAKE_EXE_LINKER_FLAGS "-lwinpthread")
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Audience POLL Question
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What is the most important reason to use a host toolchain file in 
embedded software development?
a) To ensure consistent build environments across different development 

machines
b) To simplify cross-compilation for multiple target platforms
c) To automate the inclusion of third-party libraries and dependencies
d) To optimize build times by using custom compiler and linker settings
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Target Toolchain Files
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Target Toolchain Files – What are they for?

A Target Toolchain file is a configuration file that defines the tools, 

compilers, and libraries used when cross-compiling software on a host 

machine (the machine where the build is happening) for a different target.

It sets up the environment to ensure consistent build for the target 

architecture.
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Target Toolchain Files – An Example
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Target Toolchain Files – An Example
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Target Toolchain Files – An Example
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Target Toolchain Files – An Example
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Target Toolchain Files – An Example
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Audience POLL Question
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Why do you use a target toolchain file when developing embedded 
software?
a) To define the specific cross-compiler and linker required for the target 

hardware
b) To configure hardware-specific optimization flags for better 

performance
c) To manage dependencies and libraries that are specific to the target 

environment
d) To ensure compatibility with the target operating system or RTOS
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Next Steps
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Embedded Build System

Transform your build system with the free 
Beningo Embedded Build System example:

- Docker container build system

- Makefile-based 

- CMake with Ninja Example

- Compilation scripts

- Integrated tools like cpputest

27

https://mailchi.mp/beningo/beningo-devops

https://mailchi.mp/beningo/beningo-devops
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Additional Resources
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Please consider the resources below:
• Jacob’s Blogs
• Jacob’s CEC courses
• Embedded Software Academy

• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm

     

Consulting Coaching Training

www.beningo.com
www.beningo.com

https://www.beningo.com/blog/
https://www.beningo.com/category/design-news-cec/
https://www.beningo.com/embedded-software-academy/
http://bit.ly/1BAHYXm
https://www.beningo.com/about/
https://www.linkedin.com/in/jacobbeningo/
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Next Steps
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Introduction to Embedded Build Systems

CMake Fundamentals

CMake for Embedded Systems

Designing your Build System

Adopting Modern Practices
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