

DesignNews

Embedded Controls Development with OpenPLC

DAY 5: ESP-Based Controlled 7-Segment LED Display with OpenPLC

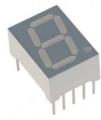
Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.


ESP32 WROOM32D DEVKITC

L298N Motor Drive Controller

7 Segment LED Display, Common Cathode

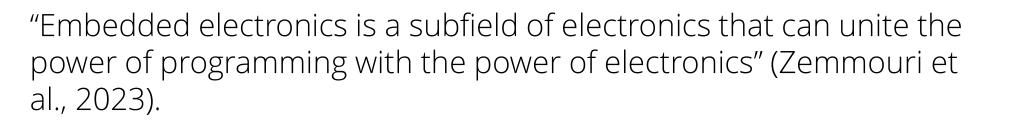
Solderless Breadboard x2

Course Kit and Materials

Solderless Breadboard Power Supply Module with 9V Battery Clip Power Cable

Adafruit Parts Pal Kit

Agenda:



- 7 Segment LED Basics

 a) Common Cathode
 b) Common Anode
 b) Creating Discrete Letters and Numbers
- ESP32-OpenPLC-7 Segment LED Driver Concept
- Electronic Circuit Schematic Diagram
- Lab: Build and Test an ESP32-OpenPLC Smart Indicator Flasher

Research Perspective

7 Segment LED Display Basics

- Alphanumeric information can be displayed on a specialized module called a 7-segment LED display.
- Light Emitting Diodes (LEDs) are arranged in the shape of numbers and letters and offer easily visible display.
- Common names commonly used are a) 7 Segment Displays
 b) Seven-segment indicators

Continuing Education Center

7 Segment LED Display Basics...

Parts of a 7-Segment LED Display

- Light-emitting segments (a-g)
- Dot light emitting component (Decimal point: DP)
- General name for the seven segments (a-g: Digits-Dig)

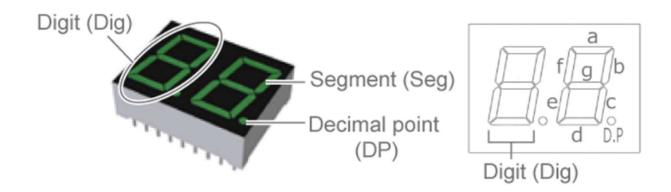


Illustration courtesy of ROHM Semiconductor

eu

Alphanumeric information can not be displayed on a 7-Segment LED display.

- a) True
- b) False

OPENPLC

7 Segment LED Display Basics... 7-Segment LED Display Configurations

- There are two kinds of LED display device circuits

 a) Common Anode (CA)
 b) Common Cathode (CC)
- Common Anode: The common (COM) pin is positive.
- Common Cathode: The common (COM) pin is negative.

7 Segment LED Display Basics...

7-Segment LED Display Configurations

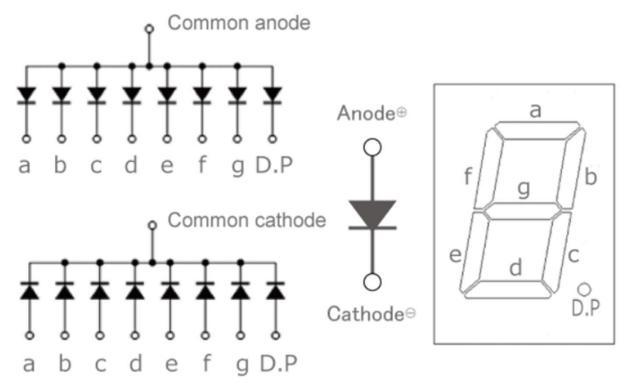


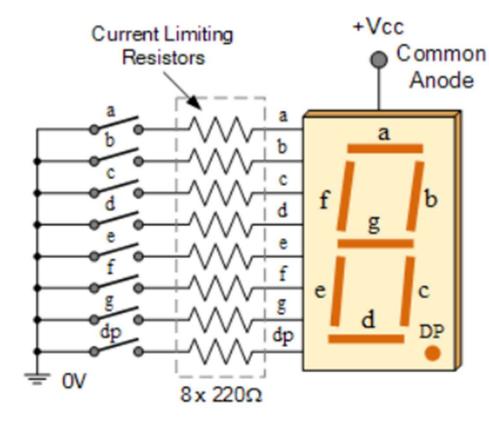
Illustration courtesy of ROHM Semiconductor

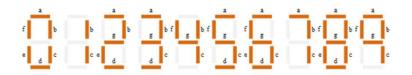
Question 2

There are three kinds of LED display device circuits. a) True b) False

Creating Discrete Letters and Numbers

Toggle Switches are used to create Letters and Circuits on a CA 7-Segment LED Display.




Illustration courtesy of Electronics-Tutorial

Creating Discrete Letters and Numbers ...

Truth Table used to determine what individual segments to turn on to create numbers

Decimal		Inc	dividual S	egments	Illuminat	ed	
Digit	а	b	с	d	е	f	g
0	×	×	×	×	×	×	
1		×	×				
2	×	×		×	×		×
3	×	×	×	×			×
4		×	×			×	×
5	×		×	×		×	×
6	×		×	×	×	×	×
7	×	×	×				
8	×	×	×	×	×	×	×
9	×	×	×			×	×

Illustration courtesy of Electronics-Tutorial

Creating Discrete Letters and Numbers ...

Digital Circuit used to drive a Common Cathode 7-Segment LED Display

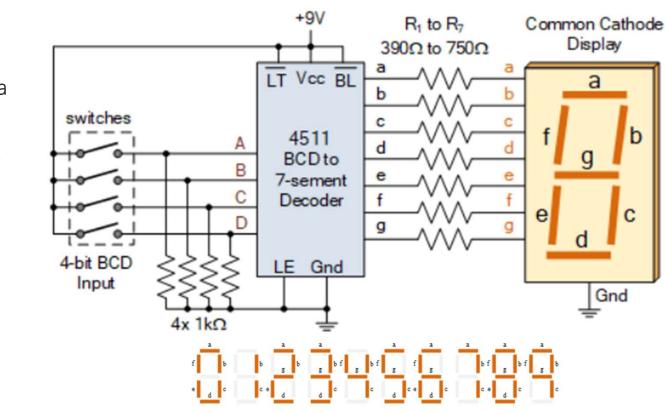


Illustration courtesy of Electronics-Tutorial

Question 3

In reviewing slide 15, with switches D and C closed, what number will be displayed on the 7-Segment Display.

a) 5 b) 4 c) 7 d) 9

Letters that can I Η be created on a G А b E С a g h 7-Segment LED Display S u V 0 n

> Illustration courtesy of Opto Plus LED Corp

Creating Discrete Letters and Numbers ...

Illustration courtesy of Opto

А	а	b	с	d	е	f	g	dp
R	v	v	v		v	v	v	
b								
B			v	v	v	v	v	
С								
B.	v			v	v	v		
с								
Ħ.				v	v		v	
d								
B		v	v	v	v		v	
Е								
B	v			v	v	v	v	

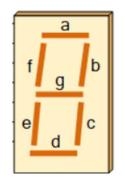
Plus LE	D Co		1						
dp	F	v				v	v	v	
	g B	v	v	v	v		v	v	
	G	v		v	v	v	v		
	Н		v	v		v	v	v	
	h H			v		v	v	v	
	i Fl.	v		v					

Letters that can be created on a 7-Segment LED Display

	а	_ [
f	g	b
е	d	с

18

Creating Discrete Letters and Numbers ...


Illustration courtesy of Opto

								Plus	LED C	Corp	
I		v	v							N	
<u>ј</u>											
Ĥ.	v		v	v						°	
L				v	v	v				p P	
1										P	
P.					v	v				r	
n			v		v		v			s B	
										t	

N	v	v	v		v	v		
0	v	v	v	v	v	v		
•			v	v	v		v	
P	v	v			v	v	v	
а Р	v	v	v			v	v	
r					v		v	
s	v		v	v		v	v	
t				v	v	v	v	

Letters that can be created on a 7-Segment LED Display

Creating Discrete Letters and Numbers...

U	v	v	v	v	v		
u D		v	v	v			
y H	V	v			v	v	

Letters that can be created on a 7-Segment LED Display

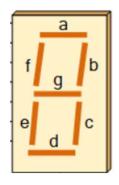
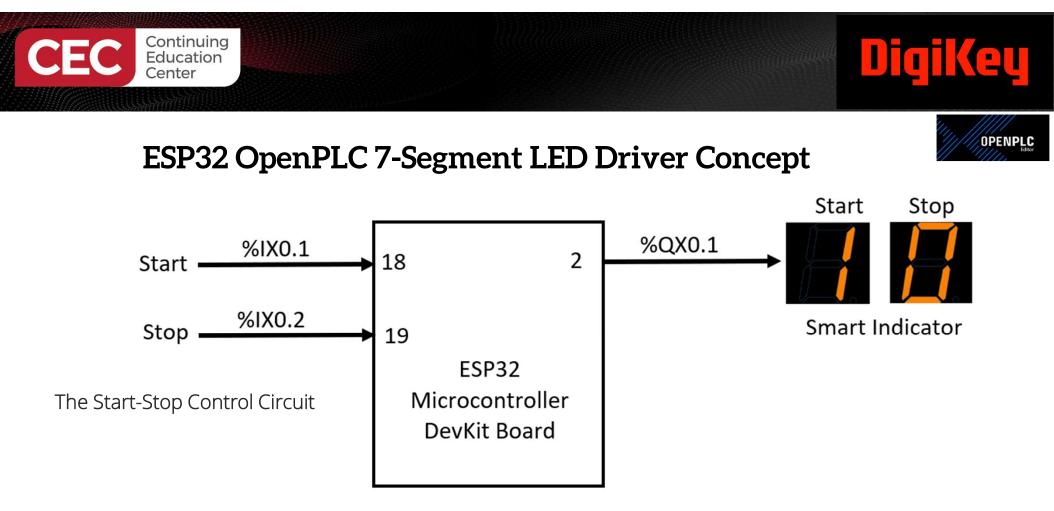
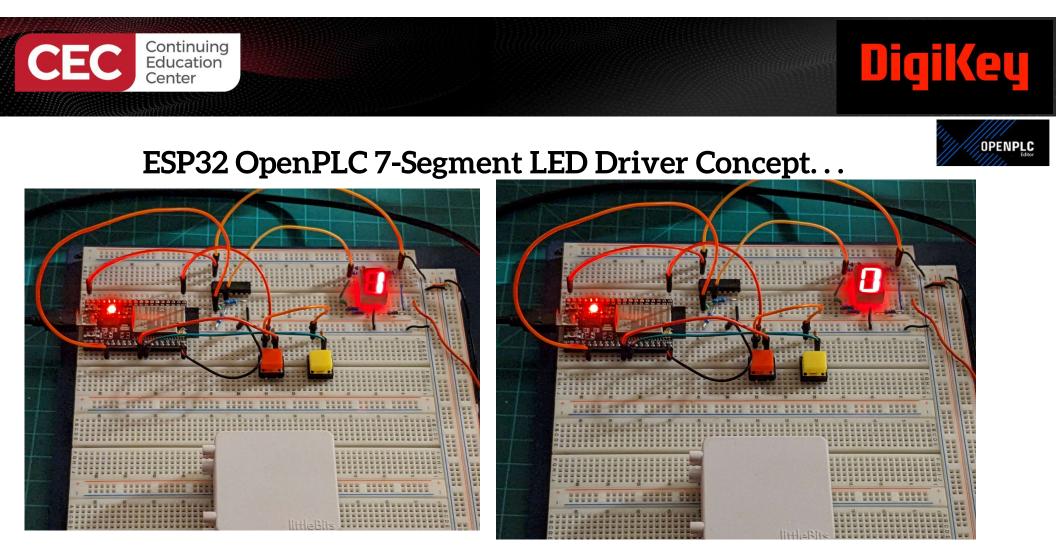



Illustration courtesy of Opto Plus LED Corp

The Smart Indicator will display a binary 1 for (Start Event) and binary 0 for Stop condition

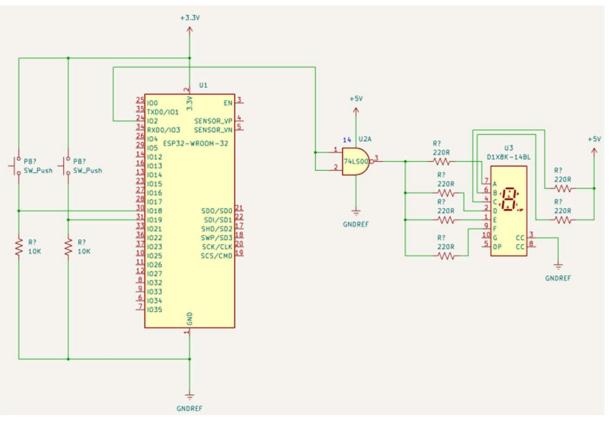

d) 19

Question 4

On slide 21, address %IX0.2 is assigned to pin_ a) 17 b) 18 c) 2

The Start-Stop Control Circuit:

The Smart Indicator will display a binary 1 for (Start Event) and binary 0 for Stop condition


ESP32 OpenPLC 7-Segment LED Driver Concept

24

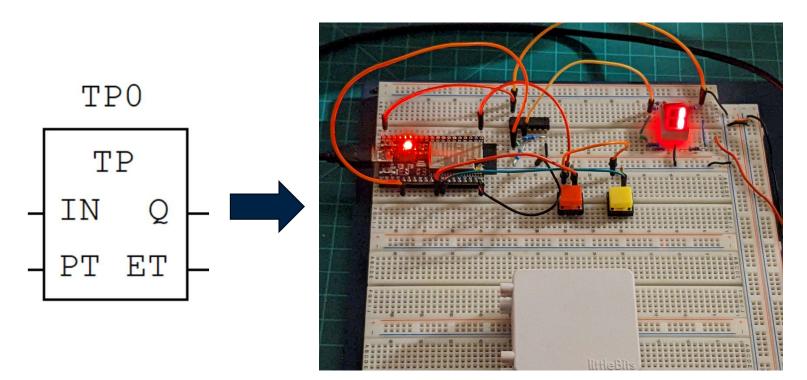
Electronic Circuit Schematic Diagram

The Smart Indicator will display a binary 1 for (Start Event) and binary 0 for Stop condition

Digil Keu

ESP32 OpenPLC 7-Segment LED Driver Concept

Class Filter: All


	2	7" ES	SP3	2_	Sta	rt	S	to	P_	Co	nt	rol	le	r	×	2					
	Desc	riptio	on:																		
Ladder	#			١	lar	ne	•			T		1	CI	as	s						Т
	1	ST	AR	Т						l	.00	al						B	00	L	
Diagram	2	ST	OP							l	.00	al						BQ	00	L	
•	3	CF	2							l	.00	al						B	00	L	
program	4	LE	D							l	.00	al						BO	00	L	
with																					
Tags								× • •									40 40 40				

#	Name	Class	Type	Location	Initial Value	Option	Documentation
1	START	Local	BOOL	%IX0.1			Pin 18 on ESP32 microcontroller
2	STOP	Local	BOOL	%IX0.2			Pin 19 on ESP32 microcontroller
3	CR	Local	BOOL				Internal Memory Bit for OpenPLC
4	LED	Local	BOOL	%QX0.1			Pin 2 on ESP32 microcontroller
				STARI		() LED	
						()	

 \sim

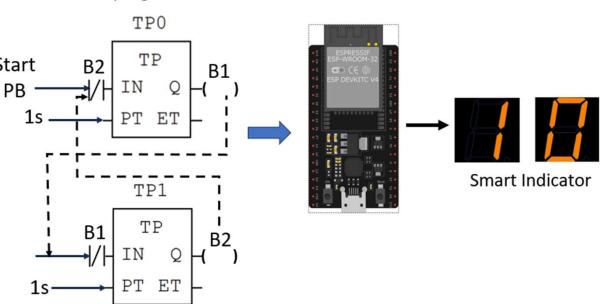
Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher

OPENPLC

Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher...

Lab Objectives:

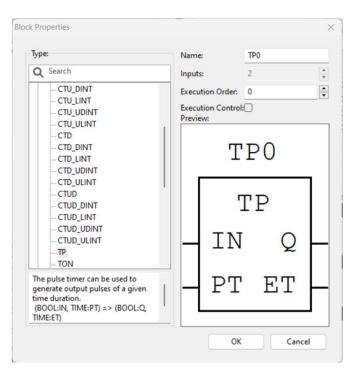
- Participants will learn to Build an ESP32 OpenPLC Smart Indicator Flasher.
- Participants will learn to program the ESP32 microcontroller using OpenPLC.
- Participants will learn to run and test the ESP32 Counter UP Motor Controller LD program on an ESP32 microcontroller.


Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher...

Interlocking Timers LD

program

Concept Diagram

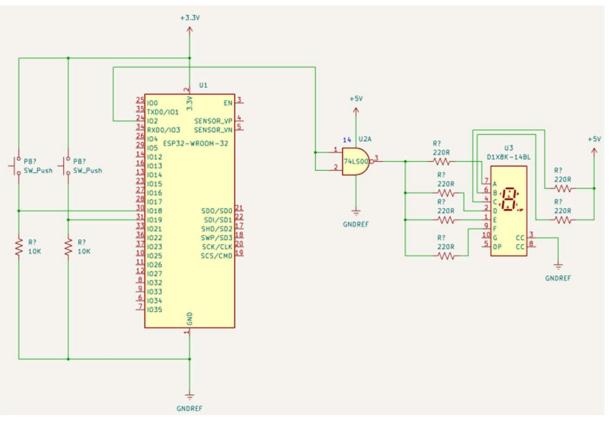


OPENPLC

Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher...

Pulse Timer Function Block Diagram

When Elapsed Time (ET) = Preset Time (PT): --→ Q is High


ESP32 OpenPLC 7-Segment LED Driver Concept

30

Electronic Circuit Schematic Diagram

The Smart Indicator will display a binary 1 for (Start Event) and binary 0 for Stop condition

OPENPLC

Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher...

Review Days 1 and 2 steps to build the Start-Stop Control Circuit LD as a reference

scription:		Clas	s Filter: All	~		4 - 1
# Name	Class	Type	Location	Initial Value	Option	Documentation
1 Start_Timer	Local	BOOL	%IX0.1			Pin 18 on ESP32 micrcontroller
2 Smart_Indicato	r Local	BOOL	%QX0.1			Pin 2 on ESP32 microcontroller
3 B1	Local	BOOL				Internal Bit Memory Address 1
4 B2	Local	BOOL				Internal Bit Memory Address 2
5 TP0	Local	TP				Timer Pulse0 set for 100ms
6 TP1	Local	TP				Timer Pulse1 set for 100ms
		B1	T#100ms	PT ET TP1 TP IN Q PT ET Sma	B2 ()-	Indicator will display a bina 1 for (Start Event) and binary 0 for

Lab: Build and Test an ESP32 OpenPLC Smart Indicator Flasher...

Functional ESP32 OpenPLC Smart Indicator Flasher

YouTube Video

https://youtu.be/ekkadDCOIGs

Get ESP32 OpenPLC Smart Indicator Flasher LD program below! https://github.com/DWilcher/HCI_Electronics/blob/main/Embedded_Controls_Development_Code.zip

CEC Continuing Education Center		DigiKey
Lab: Build and Tes Controller	st an ESP32 OpenPLC Motor Driver	OPENPLC
Create Tags for t	he CountUp DC Motor Controller	
Review Days 1 and 2 steps to build the Start- Stop Control Circuit LD	Count_Up Reset Preset_Value Count_Complete	t_Complete ()
Get ESP32_Count	Up_Controller LD program below!	

https://github.com/DWilcher/HCI_Electronics/blob/main/Embedded_Controls_Development_Code.zip

Question 5

What condition allows Q-output to turn on using a Pulsed Timer (TP) Function Block Diagram?

```
a) ET > PT
b) ET < PT</li>
c) ET = PT
d) PT = ET
```


Thank you for attending

Please consider the resources below:

International Electrotechnical Commission. (2003). *International standard* (IEC61131-3). <u>https://d1.amobbs.com/bbs_upload782111/files_31/ourdev_569653.pdf</u>

OpenPLC.(2023). Openplc overview. https://autonomylogic.com/docs/openplc-overview/

- Wilcher. D. (2023, September 28). *PLC ladder logic on an arduino: Build a start-stop control circuit.* <u>https://control.com/technical-articles/plc-ladder-logic-on-an-arduino-building-a-start-stop-circuit/</u>
- Zemmouri, A., Barodt, A., Dahou, H., Alarequi, M., Eigouri, R., Htou, L., & Benbrahim, M. (2023). A microsystem design for controlling a dc motor by pulse width modulation using microblaze soft-core. *International Journal of Electrical and Computer Engineering*, 13(2), 1337-1448. <u>https://www.researchgate.net/publication/365994306_A_microsystem_design_for_controlling_a_DC_motor_by_pulse_width_modulation_using_MicroBlaze_soft-core</u>

DesignNews

Thank You

Sponsored by

