

DesignNews

Secure MCUs and RTOSs

DAY 2: Secure Microcontroller Solutions

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.

THE SPEAKER

Jacob Beningo

Visit 'Lecturer Profile'

Beningo Embedded Group - President

Focus: Embedded Software Consulting

An independent consultant who specializes in the design of real-time, microcontroller based embedded software. He has published two books:

- Reusable Firmware Development
- MicroPython Projects
- Embedded Software Design

Writes a weekly blog for DesignNews.com focused on embedded system design techniques and challenges.

Visit <u>www.beningo.com</u> to learn more ...

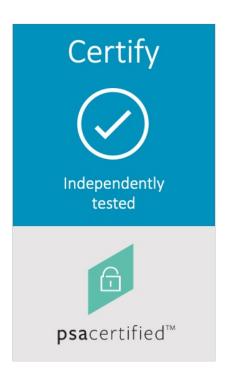
Visit 'Lecturer Profile' in your console for more details.

Course Sessions

- Threat Model Security Analysis (TMSA)
- Secure Microcontroller Solutions
- Arm TrustZone
- Secure Boot and Firmware Updates
- Secure RTOSes

1

Platform Security Architecture (PSA)



Platform Security Architecture (PSA)

Platform Security Architecture (PSA)

PSA Certification – A certification program based on openly published threat models, specs and open-source reference code.

Three assurance levels

PSA Silicon OS OEM
Certification

PSA Certification Level	Silicon	OS	OEM
Level 3 Months	√	Third-part	y evaluation
Level 2 1 month	√	sch	emes
Level 1 1 day	✓	✓	✓

Level 1: Document & Declare with lab check

- Security Model goals, government requirements
- IoT threat models SFRs
- Lab check of questionnaire

Level 2: Mid-level assurance/robustness

- · Time-limited white box testing
- PP, eval methodology and attack methods

Level 3: Substantial - Root of Trust

- More extensive attacks
 e.g. side-channel, perturbation
- Higher assurance

Platform Security Architecture (PSA) - Selecting an MCU

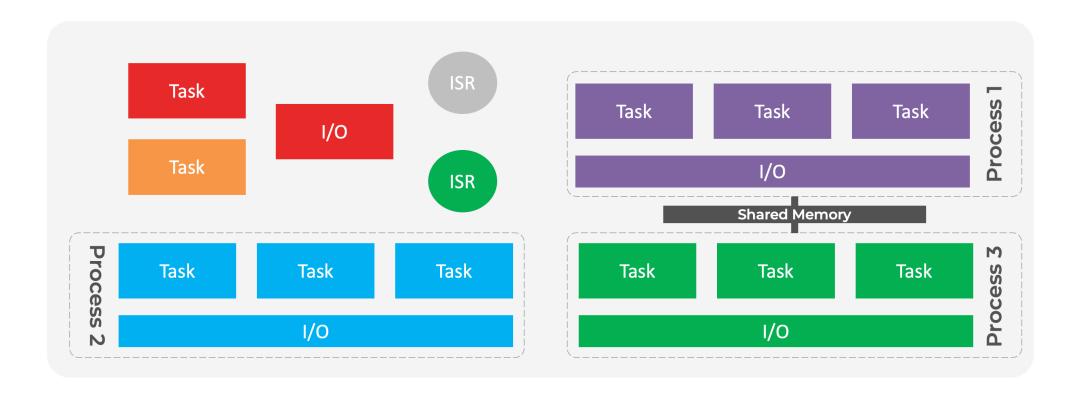
PSA

Secure MCU Features

- Encryption
- Digital signature
- eFuses
- Isolated execution environment for trusted applications
- Secure element functionality

What PSA step is optional for embedded products?

- Analyze
- Architect
- Implement
- Certify


2 MCU Security Solutions

MCU Security Solutions - MPUs

MCU Security Solutions - Multicore Processors

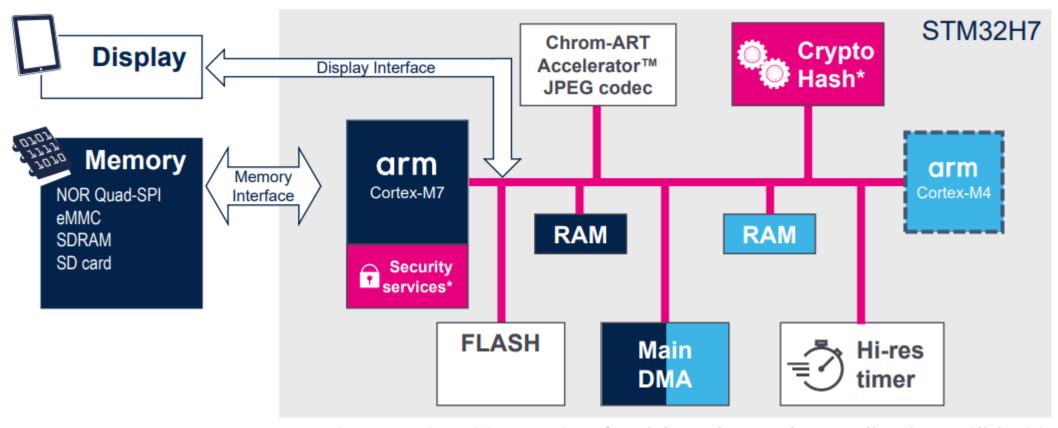


Image Source: STM32H7 MCUs for rich and complex applications, Slide 28

MCU Security Solutions - TrustZone

arm TRUSTZONE

Normal environment (Non-Secure)

Application Examples

- User applications
- RTOS
- Device drivers
- Protocol stacks

Normal Resources

General peripherals

Handler Mode

Thread Mode

Protected environment (Secure)

Secure Software Examples

- Secure Boot
- Cryptography libraries
- Authentication
- RTOS support APIs / RTOS

Secure Resources

- Secure storage
- Crypto accelerators

Secure

Handler

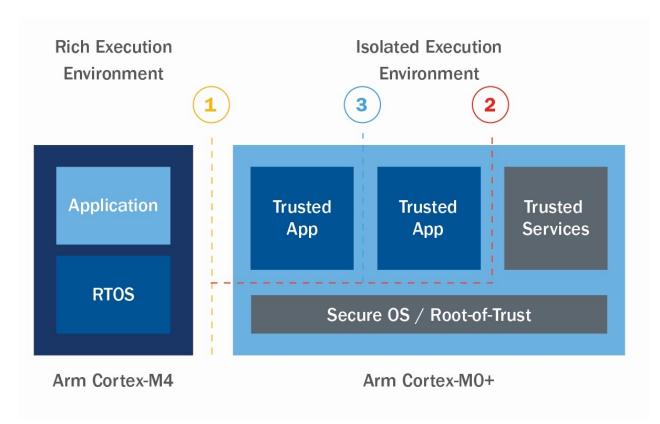
Mode

Thread

Mode

What security tools are familiar with using in an embedded environment?

- MPU
- Secure peripherals
- Multicore MCU
- TrustZone
- All the above
- Other


3 Example MCUs

Example MCUs - PSOC64

Hardware-based Isolation within PSoC 64 Secure MCUs

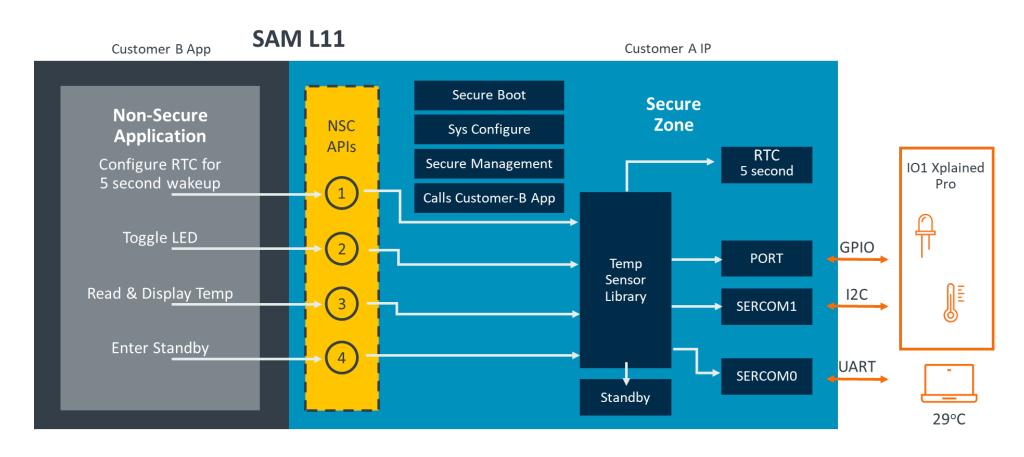
Hardware based isolation within PSoC 64 Secure MCUs enables secure element functionality and reduces the attack surface

3 Levels of Isolation

- 1. secure execution environment (SEE) isolated from rich execution environment
- 2. root-of-trust and trusted services isolation within SEE
- 3. Application isolation within SEE

Example MCUs - STM32H5

STM32H5 MCU Series 32-bit Arm® Cortex®-**M33** (DSP + FPU) – 250 MHz



 ART Accelerator™ USART, SPI, I²C 16 and 32-bit timers SHA, TRNG 	Produc line	ct	Dual bank Flash (KB)	RAM (KB)	Memory I/F	USB	12- bit ADC 5 Msps	1x Op-amp 1x Comp	CAN-FD	DCMI HDMI-CEC	Ethernet	Power Supply	TrustZone	AES/ SAES PKA OTFDEC HUK ST-iRoT
· DMA · DAC	CTM20UEv2	563	1024 to 2048	640	2x SDMMC FMC 1x OctoSPI	USB FS USB UCPD	2	2	2	•	•	SMPS LD0	•	-
Digital Temperature sensor	STM32H5x3	573	2048	640	2x SDMMC FMC 1x OctoSPI	USB FS USB UCPD	2	-	2		•	SMPS LD0		•
 Low voltage 1.62 to 3.6V V_{BAT} mode Unique ID 	STM32H562		1024 to 2048	640	1x SDMMC FMC 1x OctoSPI	USB FS USB UCPD	2	J.	1	•	-	LD0		-
	STM32H503		128	32	1x SDMMC	USB FS	1	•	1	-	-	LD0	-	-

Example MCUs - SAM L11

Do you use a secure MCU? (Put which one in the chat if you do)

- No
- Yes
- Currently evaluating
- Within the next 12 months

4 Going Further

Security and RTOS Resources

- Jacob's RTOS Blogs
- Jacob's RTOS courses
- Jacob's Security Blogs
- TrustZone for Cortex-M
- Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm

www.beningo.com

DesignNews

Thank You

Sponsored by

BENINGO EMBEDDED GROUP

© 2022Beningo Embedded Group, LLC. All Rights Reserved.